
From: Moody, Dustin (Fed)
To: Kerman, Sara J. (Fed)
Cc: Chen, Lily (Fed); Regenscheid, Andrew R. (Fed)
Subject: PQC FRN is almost ready
Date: Tuesday, November 29, 2016 11:00:06 AM
Attachments: Draft Comments Summary v2.docx

final CFP v4.5.docx
CFP announcement 2.docx
FAQ 2.3.docx
API v4.rtf
Comments to post unformatted.docx

Sara,
Vickie told me yesterday the FRN package was with Melissa. Hopefully that means it won’t take too
long until it is posted. Just wanted to give you a heads up and check if you’ll be able to post the
various documents we have to our website for when it is published. I’m attaching the latest versions
of all of them, although the CFP and FAQ will likely have a few small changes which I’ll forward to
you as soon as I have them. Thanks!
Dustin
- One of the attached files is the “Comments to post unformatted” doc, which has all the public
comments we received. I seem to remember we had a formatted version? Do you have that?
Because I’m not seeing it in my files.

mailto:dustin.moody@nist.gov
mailto:sara.kerman@nist.gov
mailto:lily.chen@nist.gov
mailto:andrew.regenscheid@nist.gov

Summary of Draft Call for Proposals Comments and Changes

NIST would like to thank those who submitted comments regarding the draft submission requirements and evaluation criteria for its post-quantum cryptography standardization process. The submitted comments have been compiled and posted at www.nist.gov/pqcrypto. In this document, we summarize the comments received and describe the changes NIST made as a result.

Many of the comments NIST received focused on a lack of clarity in the language in the draft proposal. For instance, a number of commenters had concerns with our use of terminology. This included the usage of “perfect forward secrecy” which did not include any explanation of its meaning, as well as being consistent with how the terms“quantum-resistant,” “quantum-safe,” and “post-quantum” were used. Several commenters requested clarification of potentially confusing language. For instance, there were requests for clarification on the language pertaining to submissions that provide implementations of more than one of the desired cryptographic functionalities. These issues were all dealt with in a very straightforward manner, and fixed in the final call for proposals as necessary.

In turning now to the issues that involved more substantive concerns, we begin with those we could not or otherwise did not accommodate in our revised final call for proposals.

There were a significant number of suggestions relating to the implementation of algorithms. For instance, a number of commenters requested that we recommend or require constant-time implementations of algorithms. While we chose not to require constant-time implementations, we did modify the document to address the constant-time issue and make it clear that we view such implementations as preferable.

Several commenters suggested requiring implementations on a wider range of computing devices than the Intel x64 processor. In particular, they would like to see implementations on more constrained mobile and IoT (Internet of Things) devices. Again, while we chose not to make it a requirement, we did explicitly give them an option of submitting additional implementations on other platforms, and noted that it may be useful.

Some commenters strongly requested that royalty-free licensing be a requirement in our proposals. After consultation with legal experts, we left the language as is. However, we more strongly indicated our preference for algorithms which are royalty-free, and NIST expects that there will be at least one type of algorithm of each functionality selected for standardization which is available without royalties.

A number of commenters took issue with NIST’s initial request for public-key encryption and key-agreement/key exchange, in a number of different manners. One of the criticisms was that our request for public-key encryption and key-exchange schemes was in some sense both too vague and too narrowly defined. Some of the commenters preferred the use of the KEM (key encapsulation mechanism) terminology and definition to the use of the public-key encryption and key exchange. In the interest of broader applicability, we left in public-key encryption, but we replaced the somewhat imprecise request for key exchange with the more explicitly and concretely defined KEM framework.

Commenters also pointed out that for a one-time use KEM (or a one-time use public-key encryption scheme), semantical security with respect to adaptive chosen ciphertext attack (known as IND-CCA2 security) is unnecessary, even while agreeing that general public-key encryption or long-term KEM schemes should indeed satisfy IND-CCA2 security. In particular, it was noted that an already-existing candidate post-quantum KEM scheme does not satisfy IND-CCA2 security, yet this does not cause a security problem for one-time use cases. NIST agrees regarding the lack of a need for IND-CCA2 security for fully ephemeral encryption/key-establishment schemes and made additional specifications relating to their security model which only requires IND-CPA security.

The greatest number of comments dealt with quantum security and the target security strengths. Many comments expressed confusion about the definition of security strength in terms of the cost of breaking various symmetric cryptographic primitives. Others questioned the rationale of NIST’s approach on how to define quantum security.

A handful of commenters wondered whether or not separate parameters were required for all 5 levels of security in a given submission. Still others questioned the specific amounts of quantum or classical security required, as well as our choices for pairing quantum and classical levels of security. For instance, some noted that it is generally difficult, if not impossible, to tune classical and quantum parameters separately.

After much discussion, NIST continues to ask for five security strength categories. However, we did make significant changes to address the concerns raised by the comments. We clarified that submitters are not required to provide different parameters for all five security strengths. Also, in the draft proposal, we had specified each target security level with the number of bits of both classical and quantum security required, and then attempted to relate these to breaking the standard symmetric cryptographic primitives AES and SHA-2/3. In our final call for proposals, we specify each of the five security strength categories entirely in terms of the computational resources required to break each standardized cryptographic primitive.

We also significantly revised the section pertaining to security strength in order to address many of the concerns raised by commenters. To address misconceptions as to our rationale, we explicitly describe our security goals. We also try to address some of the confusion to the levels of security requested by providing suggestions for conversion factors between quantum and classical gates and circuit depth and the amount of computational resources required to break each of the standardized cryptographic primitives.

We received comments regarding decryption failures, including a request for a threshold of the maximum probability of decryption failure that would be tolerated. While we declined to specify any concrete threshold, we did require that any non-zero failure rated be explicitly given in the submission, along with the security impact of such failures. As such failures are usually very tunable via shifts in parameter, we felt it made sense to defer a decision on the maximum acceptable decryption failure rate to later in the process.

Finally, we had a number of commenters suggest that we provide greater emphasis on any submitted scheme’s suitability for use in currently existing protocols and applications. We agreed with the suggestions and explicitly added ease of incorporation into current protocols and applications as a positive flexibility factor.

[bookmark: _GoBack]We note that this summary does not cover every topic raised by the comments received by NIST, but is intended to address the more substantive issues brought forward. Some further explanation can be found at the Frequently Asked Questions (FAQ) section of our website: www.nist.gov/pqcrypto.

Proposed Submission Requirements and Evaluation Criteria

for the Post-Quantum Cryptography Standardization Process

Table of Contents

1. Background

2. Proposed Requirements for Submission Packages

2.A Cover Sheet 

2.B Algorithm Specifications and Supporting Documentation

2.C Digital and Optical Media 

2.D Intellectual Property Statements / Agreements / Disclosures

2.E General Submission Requirements 

2.F Technical Contacts and Additional Information

3. Proposed Minimum Acceptability Requirements

4. Proposed Evaluation Criteria

4.A Security

4.B Cost

4.C Algorithm and Implementation Characteristics

5. Proposed Plans for the Evaluation Process

5.A Overview

5.B Technical Evaluation

5.C Initial Planning for the first Post-Quantum Cryptography Standardization Conference

Authority: This work is being initiated pursuant to NIST’s responsibilities under the Federal Information Security Management Act (FISMA) of 2002, Public Law 107–347.

1. Background

In recent years, there has been a substantial amount of research on quantum computers – machines that exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they will compromise the security of many commonly used cryptographic algorithms.

In particular, quantum computers would completely break many public-key cryptosystems, including RSA, DSA, and elliptic curve cryptosystems. These cryptosystems are used to implement digital signatures and key establishment and play a crucial role in ensuring the confidentiality and authenticity of communications on the Internet and other networks.

Due to this concern, many researchers have begun to investigate post-quantum cryptography (PQC) (also called quantum-resistant or quantum-safe cryptography). The goal of this research is to develop cryptographic algorithms that would be secure against both quantum and classical computers. These algorithms could serve as replacements for our current public-key cryptosystems to prepare for the event that large-scale quantum computers become a reality.

At present, there are several post-quantum cryptosystems that have been proposed, including lattice-based cryptosystems, code-based cryptosystems, multivariate cryptosystems, hash-based signatures, and others. However, for most of these proposals, further research is needed in order to gain more confidence in their security (particularly against adversaries with quantum computers) and to improve their performance.

NIST has decided that it is prudent to begin developing standards for post-quantum cryptography now. This is driven by two factors. First, there has been noticeable progress in the development of quantum computers, including theoretical techniques for quantum error correction and fault-tolerant quantum computation, and experimental demonstrations of physical qubits and entangling operations in architectures that have the potential to scale up to larger systems.

Second, it appears that a transition to post-quantum cryptography will not be simple as there is unlikely to be a simple “drop-in” replacement for our current public-key cryptographic algorithms. A significant effort will be required in order to develop, standardize, and deploy new post-quantum cryptosystems. In addition, this transition needs to take place well before any large-scale quantum computers are built, so that any information that is later compromised by quantum cryptanalysis is no longer sensitive when that compromise occurs. Therefore, it is desirable to plan for this transition early.

NIST is beginning a process to develop new cryptography standards. These new standards will be used as quantum resistant counterparts to existing standards, including digital signature schemes specified in Federal Information Processing Standards Publication (FIPS) 186 and key establishment schemes specified in NIST Special Publications (SP) 800-56 A and B. The process is referred to as post-quantum cryptography standardization. The standards will be published as Federal Information Processing Standards (FIPSs) or Special Publications (SPs).

NIST is soliciting proposals for post-quantum cryptosystems and it will solicit comments from the public as part of its evaluation process. NIST expects to perform multiple rounds of evaluation, over a period of three to five years. The goal of this process is to select a number of acceptable candidate cryptosystems for standardization.

NIST anticipates that the evaluation process for these post-quantum cryptosystems may be significantly more complex than the evaluation of the SHA-3 and AES candidates. One reason is that the requirements for public-key encryption and digital signatures are more complicated. Another reason is that the current scientific understanding of the power of quantum computers is far from comprehensive. Finally, some of the candidate post-quantum cryptosystems may have completely different design attributes and mathematical foundations, so that a direct comparison of candidates would be difficult or impossible.

As a result of these complexities, NIST believes that its post-quantum standards development process should not be treated as a competition; in some cases, it may not be possible to make a well-supported judgment that one candidate is “better” than another. Rather, NIST will perform a thorough analysis of the submitted algorithms in a manner that is open and transparent to the public, as well as encourage the cryptographic community to also conduct analyses and evaluation. This combined analysis will inform NIST’s decision on the subsequent development of post-quantum standards.

NIST recognizes that some users may wish to deploy systems that use “hybrid modes,” which combine post-quantum cryptographic algorithms with existing cryptographic algorithms (which may not be post-quantum). These “hybrid modes” are outside of the scope of this document, which is focused on post-quantum cryptographic algorithms only.

2.	Proposed Requirements for the Submission Packages

Submission packages must be received by NIST by November 30, 2017. Submission packages received before September 30, 2017 will be reviewed for completeness by NIST; the submitters will be notified of any deficiencies by October 31, 2017, allowing time for deficient packages to be amended by the submission deadline. No amendments to packages will be permitted after the submission deadline, except at specified times during the evaluation phase (see Section 5).

Due to the specific requirements of the intellectual property statements as specified in Section 2.D, e-mail submissions will not be accepted for these statements The statements specified in Section 2.D must be mailed to Dustin Moody, Information Technology Laboratory, Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop 8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can be given to NIST at the first PQC Standardization Conference (see Section 5.C). The remainder of the submission package can either be mailed with the intellectual property statements, or sent as email to: pqc-submissions@nist.gov.

“Complete and proper” submission packages will be posted at http://www.nist.gov/pqcrypto for review. To be considered as a “complete” submission, packages must contain the following:

•	Cover Sheet.

•	Algorithm Specifications and Supporting Documentation.

•	Optical Media.

•	Intellectual Property Statements / Agreements / Disclosures.

These requirements are detailed below.

To be considered as a “proper” submission, packages must meet the minimum acceptability requirements specified in Section 3.

2.A	Cover Sheet

The cover sheet of a submission package shall contain the following information:

•	Name of the proposed cryptosystem.

•	Principal submitter’s name, e-mail address, telephone, organization, and postal address.

•	Name(s) of auxiliary submitter(s).

•	Name of the inventor(s)/ developer(s) of the cryptosystem.

•	Name of the owner, if any, of the cryptosystem (normally expected to be the same as the submitter).

•	Signature of the submitter.

•	(optional) Backup point of contact (with telephone, fax, postal address, and e-mail address).

2.B	Algorithm Specifications and Supporting Documentation

Each submission must include:

1) a complete written specification

2) a detailed performance analysis

3) Known Answer Test values

4) a thorough description of the expected security strength

5) an analysis of the algorithm with respect to known attacks

6) a statement of advantages and limitations.

Further details are described below.

2.B.1	

A complete written specification of the algorithms shall be included, consisting of all necessary mathematical operations, equations, tables, and diagrams that are needed to implement the algorithms. The document shall also include a design rationale, and an explanation for all the important design decisions that have been made.

Each submission package shall describe a collection of algorithms, also called a cryptosystem or cryptographic scheme, that implements one or more of the following functionalities: public-key encryption, key encapsulation mechanism[footnoteRef:1] (KEM), and digital signature. Public-key encryption schemes shall include algorithms for key generation, encryption, and decryption. KEM schemes shall include algorithms for key generation, encapsulation, and decapsulation. Digital-signature schemes shall include algorithms for key generation, signature generation and signature verification. [1: While the terms public-key encryption and KEM are widely used in academic literature, previous NIST publications have tended to describe KEMs using the term “key agreement” (also known as key exchange), and have tended to describe public key encryption schemes using the term “key transport.”]

If a submission includes more than one type of scheme, NIST will evaluate the schemes of each type separately. Submitters may choose to combine different types of schemes into a single submission. They may also instead prepare and submit a complete submission package for each algorithm, making sure to include all supporting documents and intellectual property statements in each individual package.

[bookmark: _GoBack]As the KEM and public-key encryption functionalities can generally be interconverted, unless the submitter specifies otherwise, NIST will apply standard conversion techniques to convert between schemes if necessary.

For algorithms that have tunable parameters (such as the dimension of some underlying vector space, or the number of equations and variables), the submission document shall specify concrete values for these parameters. If possible, the submission should specify several parameter sets that allow the selection of a range of possible security/performance tradeoffs. In addition, the submitter should provide an analysis of how the security and performance of the algorithms depend on these parameters. To facilitate the analysis of these algorithms by the cryptographic community, submitters are encouraged to also specify parameter sets that provide lower security levels, and to provide concrete examples that demonstrate how certain parameter settings affect the feasibility of known cryptanalytic attacks.

Specific parameter sets may permit NIST to select a different performance/security tradeoff than originally specified by the submitter, in light of discovered attacks or other analysis, and in light of the alternative algorithms that are available. NIST will consult with the submitter of the algorithm, as well as the cryptographic community, if it plans to select that algorithm for development as a NIST standard, but with a different parameter set than originally specified by the submitter.

A complete submission shall specify any padding mechanisms and any uses of NIST-approved cryptographic primitives that are needed in order to achieve security. If the scheme uses a cryptographic primitive that has not been approved by NIST, the submitter shall provide an explanation for why a NIST-approved primitive would not be suitable.

To help rule out the existence of possible back-doors in an algorithm, the submitter shall explain the provenance of any constants or tables used in the algorithm.

2.B.2 The submitter must also include a statement regarding the algorithm’s estimated computational efficiency and memory requirements for the “NIST PQC Reference Platform” (specified in Section 5.B). Efficiency estimates for other platforms may be included at the submitter’s discretion. These estimates shall each include the following information, at a minimum:

a. A description of the platform used to generate the estimate, in sufficient detail so that the estimates could be verified in the public evaluation process. For software implementations, include information about the processor, clock speed, memory, and operating system, on which the performance estimates were obtained. For hardware estimates, a gate count (or estimated gate count) should be included.

b. A speed estimate and memory requirements for the algorithm(s) on the reference platform specified in Section 5.B. At a minimum, the number of milliseconds or clock cycles required to perform each required operation (e.g., key generation, encryption, decryption, sign, verify), and the size of all inputs and outputs (e.g., keys, ciphertexts, signatures).

2.B.3 In addition, each submission package is required to include Known Answer Test (KAT) values that can be used to determine the correctness of an implementation of the submitted algorithms. The KATs are individual input tuples that produce single output values, e.g., an input tuple of a key and plaintext resulting in an output of the corresponding ciphertext. If an algorithm uses random values, the KAT should specify a fixed value for the random bits used by the algorithm, in order to force the algorithm to produce a fixed output value. Separate KATs should be provided to test different aspects of the algorithm, e.g., key generation, encryption, decryption, sign, verify, etc.

The KATs shall be included as specified below. All of these KAT values shall be submitted electronically, in separate files, on a CD–ROM, DVD, USB flash drive, or included in a zip file as described in Section 2.C.

Each file must be clearly labeled with header information listing:

1. Algorithm name,

2. Test name,

3. Description of the test, and

4. Other parameters.

The list must be followed by a set of tuples where all values within the tuple are clearly labeled (e.g., Plaintext, PublicKey, RandomBits, Ciphertext, etc.). Sample files for these KAT values will be posted at http://www.nist.gov/pqcrypto.

All applicable KATs that can be used to verify various features of the algorithm shall be included. A set of KATs shall be included for each security strength specified in Section 4.A. Required KATs include:

a) If the execution of an algorithm produces intermediate results that are informative (e.g., for debugging an implementation of the algorithm), then the submitter shall include known answers for those intermediate values for each of the required security strengths. Examples of providing such intermediate values are available at: http://csrc.nist.gov/groups/ST/toolkit/index.html.

b) If tables are used in an algorithm, then a set of KAT vectors shall be included to make use of the table entries.

Note: The submitter is encouraged to include any other KATs that test different features of the algorithm (e.g., for permutation tables, padding scheme, etc.). The purposes of these tests shall be clearly described in the file containing the test values.

2.B.4 The submission package shall include a statement of the expected security strength of the cryptosystem, along with a supporting rationale. For each parameter set the submitter wishes NIST to consider for standardization, the submitter shall specify a security definition from sections 4.A.2, 4.A.3, or 4.A.4, as well as an estimated security strength according to the categories given in section 4.A.5. All submitters are advised to be somewhat conservative in assigning parameters to a given category, but submitters of algorithms where the complexity of the best known attack has recently decreased significantly, or is otherwise poorly understood, should be especially conservative. Submitters should give quantitative estimates for any additional security provided by their settings above and beyond the minimum security strength provided by the relevant security strength category. Such estimates should include, at a minimum, a claimed classical security strength. Furthermore, the statement should address the additional attack scenarios identified in Section 4.A.6.

2.B.5 The submission package shall include a statement that summarizes the known cryptanalytic attacks on the scheme, and provides estimates of the complexity of these attacks.

The submitter shall provide a list of references to any published materials describing or analyzing the security of the submitted algorithm or cryptosystem. When possible, the submission of copies of these materials (accompanied by a waiver of copyright or permission from the copyright holder for public evaluation purposes) is encouraged.

2.B.6 The submission package shall include a statement that lists and describes the advantages and limitations of the cryptosystem. Such advantages and limitations may involve the assessment of the cryptosystem’s security against classical and quantum attacks, as well as any unusual characteristics of the scheme, such as extra functionalities, performance tradeoffs, and unusual vulnerabilities. This statement may also discuss the ease of implementing and deploying the algorithms, and their compatibility with existing protocols, networks and applications. This could include, for example, the suitability of the algorithm for use in hybrid schemes, which may be part of the transition to post-quantum cryptosystems.

In addition, this statement may address the ability to implement the algorithms in various environments, including, but not limited to 8-bit processors (e.g., smartcards), voice applications, satellite applications, or other environments where low power, constrained memory, or limited real-estate are consideration factors. To demonstrate the efficiency of a hardware implementation of the algorithm, the submitter may include a specification of the algorithm in a nonproprietary hardware description language (HDL).

2.C	Digital and Optical Media

All electronic data shall be provided either in a zip file, or on a single CD-ROM, DVD, or USB flash drive labeled with the submitter’s name, as well as the name of the proposed cryptosystem.

2.C.1 Implementations Two implementations are required in the submission package: a reference implementation and an optimized implementation. The goal of the reference implementation is to promote understanding of how the submitted algorithm may be implemented. Since this implementation is intended for reference purposes, clarity in the implementation code is more important than the efficiency of the code. The reference implementation should include appropriate comments and clearly map to the algorithm description included in Section 2.B.1. The optimized implementation, targeting the Intel x64 processor (a 64-bit implementation), is intended to demonstrate the performance of the algorithm. Both implementations shall consist of source code written in ANSI C.

Both implementations shall be capable of fully demonstrating the operation of the proposed algorithm. This includes support for all core features of the algorithm, e.g., encryption, decryption, key generation, public-key validation, shared secret generation, and digital signature generation and verification.

A separate document specifying a set of cryptographic service calls, i.e. a cryptographic API, for the ANSI C implementations, will be made available at http://www.nist.gov/pqcrypto. Both the reference implementation and the optimized implementation shall adhere to the provided API. Separate source code for implementing the KATs shall also be included and shall adhere to the provided API.

The reference implementation shall be provided in a directory labeled: Reference_Implementation.

The optimized implementation shall be provided in a directory labeled: Optimized_Implementation.

Submitters may, at their discretion, submit additional implementations for other platforms. These implementations may be useful during the evaluation process.

2.C.2 Known Answer Tests The files included in the zip file or on the CD–ROM, DVD, or USB flash drive shall contain all of the required test values as specified in Section 2.B.3.

These test values shall be provided in a directory labeled: KAT.

2.C.3 Supporting Documentation To facilitate the electronic distribution of submissions to all interested parties, copies of all written materials must also be submitted in electronic form in the PDF file format. Submitters are encouraged to use the thumbnail and bookmark features, to have a clickable table of contents (if applicable), and to include other links within the PDF as appropriate.

The electronic version of the supporting documentation shall be provided in a directory labeled: Supporting_Documentation.

2.C.4 General Requirements for Digital and Optical Media For the portions of the submission that may be provided electronically, the information shall be provided using the ISO 9660 format. This media shall have the following structure:

• README

• Reference_Implementation

• Optimized_Implementation

• KAT

• Supporting_Documentation

The “README” file shall be a plain text file and list all files that are included on the disc with a brief description of each.

All optical media presented to NIST must be free of viruses or other malicious code. The submitted media will be scanned for the presence of such code. If malicious code is found, NIST will notify the submitter and ask that a clean version of the optical media be submitted.

2.D	Intellectual Property Statements / Agreements / Disclosures

Each submitted algorithm, together with each submitted reference implementation and optimized implementation, must be made freely available for public review and evaluation purposes worldwide during the period of the post-quantum algorithm search and evaluation. The following signed statements will be required for a submission to be considered complete: 1) statement by the submitter, 2) statement by patent (and patent application) owner(s) (if applicable), and 3) statement by reference/optimized implementations' owner(s). Note that for the last two statements, separate statements must be completed if multiple individuals are involved.

Given the nature and use of cryptographic algorithms, NIST’s PQC goals include identifying technically robust algorithms and facilitating their widespread adoption. NIST does not object in principle to algorithms or implementations which may require the use of a patent claim, where technical reasons justify this approach, but will consider any factors which could hinder adoption in the evaluation process.

NIST has observed that royalty-free availability of cryptosystems and implementations has facilitated adoption of cryptographic standards in the past. For that reason, NIST believes it is critical that this process leads to cryptographic standards that can be freely implemented in security technologies and products. As part of its evaluation of a PQC cryptosystem for standardization, NIST will consider the assurances made in the statements by the submitter(s) and any patent owner(s), with a strong preference for submissions as to which there are commitments to license, without compensation, under reasonable terms and conditions that are demonstrably free of unfair discrimination.

2.D.1 Statement by Each Submitter

I, _____ (print submitter’s full name) _____, of _____(print full postal address)______ , do hereby declare that the cryptosystem, reference implementation, or optimized implementations that I have submitted, known as ____ (print name of cryptosystem)____, is my own original work, or if submitted jointly with others, is the original work of the joint submitters.

I further declare that (check one):

· I do not hold and do not intend to hold any patent or patent application with a claim which may cover the cryptosystem, reference implementation, or optimized implementations that I have submitted, known as ____ (print name of cryptosystem)____; OR (check one or both of the following):

· to the best of my knowledge, the practice of the cryptosystem, reference implementation, or optimized implementations that I have submitted, known as ____ (print name of cryptosystem)____, may be covered by the following U.S. and/or foreign patents: _____ (describe and enumerate or state “none” if applicable)_____ ;

· I do hereby declare that, to the best of my knowledge, the following pending U.S. and/or foreign patent applications may cover the practice of my submitted cryptosystem, reference implementation or optimized implementations: _____ (describe and enumerate or state “none” if applicable) ______.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the public for review and will be evaluated by NIST, and that it might not be selected for standardization by NIST. I further acknowledge that I will not receive financial or other compensation from the U.S. Government for my submission. I certify that, to the best of my knowledge, I have fully disclosed all patents and patent applications which may cover my cryptosystem, reference implementation or optimized implementations. I also acknowledge and agree that the U.S. Government may, during the public review and the evaluation process, and, if my submitted cryptosystem is selected for standardization, during the lifetime of the standard, modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any patent or patent application identified to cover the practice of my cryptosystem, reference implementation or optimized implementations and the right to use such implementations for the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove my cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryptosystem) is removed from consideration for standardization or withdrawn from consideration by all submitter(s) and owner(s), I understand that rights granted and assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed:

Title:

Date:

Place:

2.D.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those held by the submitter, the following statement must be signed by each and every owner, or each owner’s authorized representative, of each patent and patent application identified.

I, _____ (print full name) _____ , of _____(print full postal address)______ , am the owner or authorized representative of the owner (print full name, if different than the signer) of the following patent(s) and/or patent application(s): ______ (enumerate) ______ , and do hereby commit and agree to grant to any interested party on a worldwide basis, if the cryptosystem known as _____(print name of cryptosystem) _______ is selected for standardization, in consideration of its evaluation and selection by NIST, a non-exclusive license for the purpose of implementing the standard (check one):

· without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination, OR

· under reasonable terms and conditions that are demonstrably free of any unfair discrimination.

I further do hereby commit and agree to license such party on the same basis with respect to any other patent application or patent hereafter granted to me, or owned or controlled by me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring ownership of each patent and patent application, provisions to ensure that the commitments and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by me to be binding on successors-in-interest of each patent and patent application, regardless of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable, paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into the standard.

Signed:

Title:

Date:

Place:

2.D.3 Statement by Reference/Optimized Implementations’ Owner(s)

The following must also be included:

I, _____ (print full name) _____ , (print full postal address)______ , am the owner or authorized representative of the owner (print full name, if different than the signer) of the submitted reference implementation and optimized implementations and hereby grant the U.S. Government and any interested party the right to reproduce, prepare derivative works based upon, distribute copies of, and display such implementations for the purposes of the post-quantum algorithm public review and evaluation process, and implementation if the corresponding cryptosystem is selected for standardization and as a standard, notwithstanding that the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

2.E	General Submission Requirements

NIST welcomes both domestic and international submissions; however, in order to facilitate analysis and evaluation, it is required that the submission packages be in English. This requirement includes the cover sheet, algorithm specification and supporting documentation, source code, and intellectual property information. Any required information that is not submitted in English shall render the submission package “incomplete.” Optional supporting materials (e.g., journal articles) in another language may be submitted.

Classified and/or proprietary submissions will not be accepted.

2.F	Technical Contacts and Additional Information

For technical inquiries, send e-mail to pqc-comments@nist.gov, or contact Dustin Moody, National Institute of Standards and Technology, 100 Bureau Drive—Stop 8930, Gaithersburg, MD 20899–8930; telephone: +1 301–975–8136 or via fax at +1 301–975–8670, e-mail: dustin.moody@nist.gov.

Answers to germane questions will be posted at http://www.nist.gov/pqcrypto. Questions and answers that are not pertinent to this announcement may not be posted. NIST will endeavor to answer all questions in a timely manner.

3. Proposed Minimum Acceptability Requirements

Those submission packages that are deemed by NIST to be “complete” will be evaluated for the inclusion of a “proper” post-quantum public-key cryptosystem. To be considered as a “proper” post-quantum public-key cryptosystem (and continue further in the standardization process), the scheme shall meet the following minimum acceptability requirements:

1.	The algorithms shall be publicly disclosed and made available for public review and the evaluation process, and for standardization if selected, freely (i.e., shall be dedicated to the public), or shall be made available in accordance with Sections 2.D.1, 2.D.2 and 2.D.3, as applicable.

2. 	The algorithms shall not incorporate major components that are believed to be insecure against quantum computers. (For example, hybrid schemes that include encryption or signatures based on factoring or discrete logs will not be considered for standardization by NIST in this context.)

3.	The algorithms shall provide at least one of the following functionalities: public-key encryption, key exchange, or digital signature:

a. Public-key encryption schemes shall include algorithms for key generation, encryption, and decryption. The key generation algorithm shall generate public and private keys, such that messages or symmetric keys encrypted with the public key are recoverable with high probability by decryption with the corresponding private key. If decryption failure is a possibility, it shall occur at a rate consistent with claims made by the submitter. At a minimum, the scheme shall support the encryption and decryption of messages that contain symmetric keys of length at least 256 bits.

b. KEM schemes shall include algorithms for key generation, encapsulation and decapsulation. The key generation algorithm shall generate public and private key pairs, such that encapsulation with the public key and decapsulation with the private key produce the same shared secret, when the encapsulated ciphertext is given as an input to the decapsulate function. If decapsulation failure is a possibility, it shall occur at a rate consistent with claims made by the submitter. At a minimum, the KEM functionality shall support the establishment of shared keys of length at least 256 bits.

c. Digital-signature schemes shall include algorithms for key generation, signature, and verification. The key generation algorithm shall generate public and private keys, such that a message signed with the private key will be successfully verified with the corresponding public key. The scheme shall be capable of supporting a message size up to 263 bits.

4. The submission package shall provide concrete values for any parameters and settings required to achieve the claimed security properties (to the best of the submitter’s knowledge.)

A submission package that is complete (as defined in Section 2) and meets the minimum acceptability requirements (as defined immediately above) will be deemed to be a “complete and proper” submission. A submission that NIST deems otherwise at the close of the submission period will receive no further consideration. Submissions that are “complete and proper” will be posted at http://www.nist.gov/pqcrypto for public review.

4. Proposed Evaluation Criteria

NIST will form an internal selection panel composed of NIST employees to analyze the submitted algorithms; the evaluation process will be discussed in Section 5. All of NIST’s analysis results will be made publicly available.

Although NIST will be performing its own analyses of the submitted algorithms, NIST strongly encourages public evaluation and publication of the results. NIST will take into account its own analysis, as well as the public comments that are received in response to the posting of the “complete and proper” submissions, to make its decisions.

To avoid unnecessary duplication of effort, and to streamline the evaluation process, NIST encourages researchers who are developing similar cryptosystems to combine their efforts and produce a single submission package.

4.A	Security

The security provided by a cryptographic scheme is the most important factor in the evaluation. Schemes will be judged on the following factors:

4.A.1 Applications of Public-Key Cryptography NIST intends to standardize post-quantum alternatives to its existing standards for digital signatures (FIPS 186) and key establishment (SP 800-56A, SP 800-56B). These standards are used in a wide variety of Internet protocols, such as TLS, SSH, IKE, IPsec, and DNSSEC. Schemes will be evaluated by the security they provide in these applications, and in additional applications that may be brought up by NIST or the public during the evaluation process. Claimed applications will be evaluated for their practical importance if this evaluation is necessary for deciding which algorithms to standardize.

4.A.2 Security Definition for Encryption/Key-Establishment

NIST intends to standardize one or more schemes that enable “semantically secure” encryption or key encapsulation with respect to adaptive chosen ciphertext attack, for general use. This property is generally denoted IND-CCA2 security in academic literature.

The above security definition should be taken as a statement of what NIST will consider to be a relevant attack. Submitted KEM and encryption schemes will be evaluated based on how well they appear to provide this property, when used as specified by the submitter. Submitters are not required to provide a proof of security, although such proofs will be considered if they are available.

For the purpose of estimating security strengths, it may be assumed that the attacker has access to the decryptions of no more than 264 chosen ciphertexts; however, attacks involving more ciphertexts may also be considered. Additionally, it should be noted that NIST is primarily concerned with attacks that use classical (rather than quantum) queries to the decryption oracle or other private-key functionality.

4.A.3 Security Definition for Ephemeral-Only Encryption/Key-Establishment While chosen ciphertext security is necessary for many existing applications (for example, nominally ephemeral key exchange protocols that allow key caching), it is possible to implement a purely ephemeral key exchange protocol in such a way that only passive security is required from the encryption or KEM primitive.

For these applications, NIST will consider standardizing an encryption or KEM scheme which provides semantic security with respect to chosen plaintext attack. This property is generally denoted IND-CPA security in academic literature.

The above security definition should be taken as a statement of what NIST will consider to be a relevant attack. Submitted KEM and encryption schemes will be evaluated based on how well they appear to provide this property, when used as specified by the submitter. Submitters are not required to provide a proof of security, although such proofs will be considered if they are available. Any security vulnerabilities that result from re-using a key should be fully explained.

4.A.4 Security Definition for Digital Signatures NIST intends to standardize one or more schemes that enable existentially unforgeable digital signatures with respect to an adaptive chosen message attack. (This property is generally denoted EUF-CMA security in academic literature.)

The above security definition should be taken as a statement of what NIST will consider to be a relevant attack. Submitted algorithms for digital signatures will be evaluated based on how well they appear to provide this property when used as specified by the submitter. Submitters are not required to provide a proof of security, although such proofs will be considered if they are available.

For the purpose of estimating security strengths, it may be assumed that the attacker has access to signatures for no more than 264 chosen messages; however, attacks involving more messages may also be considered. Additionally, it should be noted that NIST is primarily concerned with attacks that use classical (rather than quantum) queries to the signing oracle.

4.A.5 Security Strength Categories NIST anticipates that there will be significant uncertainties in estimating the security strengths of these post-quantum cryptosystems. These uncertainties come from two sources: first, the possibility that new quantum algorithms will be discovered, leading to new cryptanalytic attacks; and second, our limited ability to predict the performance characteristics of future quantum computers, such as their cost, speed and memory size.

In order to address these uncertainties, NIST proposes the following approach. Instead of defining the strength of a submitted algorithm using precise estimates of the number of “bits of security” NIST will define a collection of broad security strength categories. Each category will be defined by a comparatively easy-to-analyze reference primitive, whose security will serve as a floor for a wide variety of metrics that NIST deems potentially relevant to practical security. A given cryptosystem may be instantiated using different parameter sets in order to fit into different categories. The goals of this classification are:

1) To facilitate meaningful performance comparisons between the submitted algorithms, by ensuring, insofar as possible, that the parameter sets being compared provide comparable security.

2) To allow NIST to make prudent future decisions regarding when to transition to longer keys.

3) To help submitters make consistent and sensible choices regarding what symmetric primitives to use in padding mechanisms or other components of their schemes requiring symmetric cryptography.

4) To better understand the security/performance tradeoffs involved in a given design approach.

In accordance with the second and third goals above, NIST will base its classification on the range of security strengths offered by the existing NIST standards in symmetric cryptography, which NIST expects to offer significant resistance to quantum cryptanalysis. In particular, NIST will define a separate category for each of the following security requirements (listed in order of increasing strength[footnoteRef:2]): [2: Note that, barring some truly surprising technological development during the standardization process, NIST will assume that the 5 security strengths are correctly ordered in terms of practical security. (E.g., NIST will assume that a brute-force collision attack on SHA256 will be technologically feasible before a brute-force key search attack on AES192.)
]

1) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 128-bit key (e.g. AES128)

2) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 256-bit hash function (e.g. SHA256/ SHA3-256)

3) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 192-bit key (e.g. AES192)

4) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 384-bit hash function (e.g. SHA384/ SHA3-384)

5) Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 256-bit key (e.g. AES 256)

Here, computational resources may be measured using a variety of different metrics (e.g., number of classical elementary operations, quantum circuit size, etc.). In order for a cryptosystem to satisfy one of the above security requirements, any attack must require computational resources comparable to or greater than the stated threshold, with respect to all metrics that NIST deems to be potentially relevant to practical security.

NIST intends to consider a variety of possible metrics, reflecting different predictions about the future development of quantum and classical computing technology. NIST will also consider input from the cryptographic community regarding this question.

As preliminary guidance to submitters, NIST suggests an approach where quantum attacks are restricted to a fixed running time, or circuit depth. Call this parameter MAXDEPTH. Plausible values for MAXDEPTH range from 240 logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year[footnoteRef:3]) through 264 logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than 296 logical gates (the approximate number of gates that atomic scale qubits with speed of light propagation times could perform in a millennium). [3: See [N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y. Yamamoto, Layered Architecture for Quantum Computing, Phys. Rev. X 2, 031007 (2012)] and
[M. Mariantoni, Building a Superconducting Quantum Computer, Invited Talk PQCrypto 2014, October 2014 Waterloo, Canada. https://www.youtube.com/watch?v=wWHAs--HA1c (accessed 10/24/2016)]
]

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers can be compared to the resources required to break AES and SHA3. At the present time, NIST would give the following estimates for the classical and quantum gate counts for the optimal key recovery and collision attacks on AES and SHA3, respectively, where circuit depth is limited to MAXDEPTH[footnoteRef:4]: [4: Quantum circuit sizes are based on the work in [M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, Applying Grover’s algorithm to AES: quantum resource estimates, in T. Takagi, editor, Post-Quantum Cryptography, Lect. Notes in Comput. Sci. vol. 9606, Springer, pp. 9–43 (2016)].
]

AES128: 2170/MAXDEPTH quantum gates or 2143 classical gates,

SHA3-256: 2146 classical gates,

AES192: 2233/MAXDEPTH quantum gates or 2207 classical gates,

SHA3-384: 2210 classical gates,

AES256: 2298/MAXDEPTH quantum gates or 2272 classical gates,

SHA3-512: 2274 classical gates[footnoteRef:5]. [5: NIST believes the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH, and may understate the quantum security of AES for very large values of MAXDEPTH.]

Finally, for attacks that use a combination of classical and quantum computation, one may use a cost metric that rates logical quantum gates as being several orders of magnitude more expensive than classical gates. Presently envisioned quantum computing architectures typically indicate that the cost per quantum gate could be billions or trillions of times the cost per classical gate. However, especially when considering algorithms claiming a high security strength (e.g. equivalent to AES256 or SHA384), it is likely prudent to consider the possibility that this disparity will narrow significantly or even be eliminated.

NIST asks submitters to provide a preliminary classification, according to the above categories, for all parameter sets that they intend to be considered for standardization. All submitters are advised to be somewhat conservative in their preliminary classifications, but submitters of algorithms where the complexity of the best known attack has recently decreased significantly, or is otherwise poorly understood, should be especially conservative.

NIST will not require submitters to provide distinct parameter sets for all five security-strength categories. Submitted parameter sets meeting the requirements of a higher category will be automatically considered to meet the requirements of all lower categories. NIST recommends that submitters provide at least one parameter set that can be provisionally classified as having security strength 4 or 5, and as many additional parameter sets as they feel are appropriate to take advantage of any available security/performance tradeoffs.

4.A.6 Additional Security Properties While the previously listed security definitions cover many of the attack scenarios that will be used in the evaluation of the submitted algorithms, there are several other properties that would be desirable:

One such property is perfect forward secrecy[footnoteRef:6]. While this property can be obtained through the use of standard encryption and signature functionalities, the cost of doing so may be prohibitive in some cases. In particular, public-key encryption schemes with a slow key generation algorithm, such as RSA, are typically considered unsuitable for perfect forward secrecy. This is a case where there is significant interaction between the cost, and the practical security, of an algorithm. [6: The term perfect forward secrecy is commonly used to denote a feature of key agreement protocols which gives assurances that past session keys will not be compromised even if the private key of the server is compromised.]

Another case where security and performance interact is resistance to side-channel attacks. Schemes that can be made resistant to side-channel attack at minimal cost are more desirable than those whose performance is severely hampered by any attempt to resist side-channel attacks. We further note that optimized implementations that address side-channel attacks (e.g., constant-time implementations) are more meaningful than those which do not.

A third desirable property is resistance to multi-key attacks. Ideally an attacker should not gain an advantage by attacking multiple keys at once, whether the attacker’s goal is to compromise a single key pair, or to compromise a large number of keys.

A final desirable, although ill-defined, property is resistance to misuse. Schemes should ideally not fail catastrophically due to isolated coding errors, random number generator malfunctions, nonce reuse, keypair reuse (for ephemeral-only encryption/key establishment) etc.

4.A.7 Other Consideration Factors As public-key cryptography tends to contain subtle mathematical structure, it is very important that the mathematical structure be well understood in order to have confidence in the security of a cryptosystem. To assess this, NIST will consider a variety of factors. All other things being equal, simple schemes tend to be better understood than complex ones. Likewise, schemes whose design principles can be related to an established body of relevant research tend to be better understood than schemes that are completely new, or schemes that were designed by repeatedly patching older schemes that were shown vulnerable to cryptanalysis.

NIST will also consider the clarity of the documentation of the scheme and the quality of the analysis provided by the submitter. Clear and thorough analysis will help to develop the quality and maturity of analysis by the wider community. NIST will also consider any security arguments or proofs provided by the submitter. While security proofs are generally based on unproven assumptions, they can often rule out common classes of attacks or relate the security of a new scheme to an older and better studied computational problem.

In addition to NIST’s own expectations for the scheme’s long-term security, NIST will also consider the judgment and opinions of the broader cryptographic community.

4.B	Cost

As the cost of a public-key cryptosystem can be measured on many different dimensions, NIST will continually seek public input regarding which performance metrics and which applications are most important. If there are important applications that require radically different performance tradeoffs, NIST may need to standardize more than one algorithm to meet these diverse needs.

4.B.1 Public Key, Ciphertext, and Signature Size Schemes will be evaluated based on the sizes of the public keys, ciphertexts, and signatures that they produce. All of these may be important consideration factors for bandwidth-constrained applications or in Internet protocols that have a limited packet size. The importance of public-key size may vary depending on the application; if applications can cache public keys, or otherwise avoid transmitting them frequently, the size of the public key may be of lesser importance. In contrast, applications that seek to obtain perfect forward secrecy by transmitting a new public key at the beginning of every session are likely to benefit greatly from algorithms that use relatively small public keys.

4.B.2 Computational Efficiency of Public and Private Key Operations Schemes will also be evaluated based on the computational efficiency of the public key (encryption, encapsulation, and signature verification) and private key (decryption, decapsulation, and signing) operations. The computational cost of these operations will be evaluated both in hardware and software. The computational cost of both public and private key operations is likely to be important for almost all operations, but some applications may be more sensitive to one or the other. For example, signing or decryption operations may be done by a computationally constrained device like a smartcard; or alternatively, a server dealing with a high volume of traffic may need to spend a significant fraction of its computational resources verifying client signatures.

4.B.3 Computational Efficiency of Key Generation Schemes will also be evaluated based on the computational efficiency of their key generation operations, where applicable. As noted in Section 4.A.6, the most common scenario where key generation time is important is when a public-key encryption algorithm or a KEM is used to provide perfect forward secrecy. Nonetheless, it is possible that key generation times may also be important for digital signature schemes in some applications.

4.B.4 Decryption Failures Some public-key encryption algorithms and KEMs, even when correctly implemented, will occasionally produce ciphertexts that cannot be decrypted/decapsulated. For most applications, it is important that such decryption failures be rare or absent. For algorithms with decryption/decapsulation failures, submitters must provide the failure rate, as well as an analysis of the impact on security that these failures could cause. While applications can always obtain an acceptably low decryption failure rate by encrypting the same plaintext multiple times, and interactive protocols can simply restart when key establishment fails, these types of solutions have their own performance costs.

4.C	Algorithm and Implementation Characteristics

4.C.1 Flexibility Assuming good overall security and performance, schemes with greater flexibility will meet the needs of more users than less flexible schemes, and therefore, are preferable.

Some examples of “flexibility” may include (but are not limited to) the following:

a. The scheme can be modified to provide additional functionalities that extend beyond the minimum requirements of public-key encryption, KEM, or digital signature (e.g., asynchronous or implicitly authenticated key exchange, etc.).

b. It is straightforward to customize the scheme’s parameters to meet a range of security targets and performance goals.

c.	The algorithms can be implemented securely and efficiently on a wide variety of platforms, including constrained environments, such as smart cards.

d.	Implementations of the algorithms can be parallelized to achieve higher performance.

e.	The scheme can be incorporated into existing protocols and applications, requiring as few changes as possible.

4.C.2 Simplicity The submitted scheme will be judged according to its relative design simplicity.

4.C.3 Adoption Any factors that could hinder widespread adoption of the algorithm will be considered in the evaluation process, including, but not limited to, intellectual property claims and licenses granted to implementers. NIST will consider the assurances made in the statements by the submitter(s) and any patent owner(s), with a strong preference for submissions as to which there are commitments to license, without compensation, under reasonable terms and conditions that are demonstrably free of unfair discrimination.

5. 	Proposed Evaluation Process

NIST will form an internal selection panel composed of NIST employees for the technical evaluations of the submitted algorithms. This panel will analyze the submitted algorithms and review public comments that are received in response to the posting of the “complete and proper” submissions. The panel will also take into account all presentations, discussions and technical papers presented at the PQC standardization conferences, as well as other pertinent papers and presentations made at other cryptographic research conferences and workshops. NIST will issue a report after each PQC standardization conference. Final selections of cryptosystems will be made by NIST and the technical rationale for these decisions will be documented in a final report. The following is an overview of the envisioned submission review process.

5.A	Overview

Following the close of the call for submission packages, NIST will review the received packages to determine which are “complete and proper,” as described in Sections 2 and 3 of this notice. NIST will post all “complete and proper” submissions at http://www.nist.gov/pqcrypto for public review. To help inform the public, a PQC standardization conference will be held at the start of the public comment process to allow submitters to publicly explain and answer questions regarding their submissions.

The initial phase of evaluation will consist of approximately twelve to eighteen months of public review of the submitted algorithms. During this initial review period, NIST intends to evaluate the submitted algorithms as outlined in Section 5.B. NIST will review the public evaluations of the submitted algorithms’ cryptographic strengths and weaknesses, and will use these to narrow the candidate pool for more careful study and analysis. The purpose of this selection process is to identify candidates that are suitable for standardization in the near future. Algorithms that are not included in the narrowed pool may still be considered for standardization at a later date, unless they are explicitly removed from consideration by NIST.

Because of limited resources, and also to avoid moving evaluation targets (i.e., modifying the submitted algorithms undergoing public review), NIST will NOT accept modifications to the submitted algorithms during this initial phase of evaluation.

For informational and planning purposes, near the end of the initial public evaluation process, NIST intends to hold another PQC standardization conference. Its purpose will be to publicly discuss the submitted algorithms, and to provide NIST with information for narrowing the field of algorithms for continued evaluation.

NIST plans to narrow the field of algorithms for further study, based upon its own analysis, public comments, and all other available information. It is envisioned that this narrowing will be done primarily on security, efficiency, and intellectual property considerations. NIST will issue a report describing its findings. Submitters of sufficiently similar algorithms may be asked to merge submissions for the next phase.

Before the start of a second evaluation period, the submitters of the algorithms will have the option of providing updated optimized implementations for use during the next phase of the evaluation. During the course of the initial evaluations, it is conceivable that some small deficiencies may be identified in even some of the most promising submissions. Therefore, for the second round of evaluations, small modifications to the submitted algorithms will be permitted for either security or efficiency purposes. Submitters may submit minor changes (no substantial redesigns), along with a supporting justification that must be received by NIST prior to the beginning of the second evaluation period. (Submitters will be notified by NIST of the exact deadline.) NIST will determine whether the proposed modification would significantly affect the design of the algorithm, requiring a major re-evaluation; if such is the case, the modification will not be accepted. If modifications are submitted, new reference and optimized implementations and written descriptions must also be provided by the announced deadline. This will allow a thorough public review of the modified algorithms during the entire course of the second evaluation phase.

Note: All proposed changes must be conveyed by the submitter; no proposed changes (to the algorithm or implementations) will be accepted from a third party.

The second round of evaluation will consist of approximately twelve to eighteen months of public review, with a focus on a narrowed pool of candidate algorithms. During the public review, NIST will similarly evaluate these algorithms as outlined in the next section. After the end of the public review period, NIST intends to hold another PQC standardization conference. (The exact date is to be scheduled.)

Following the third PQC standardization conference, NIST will prepare a summary report, which may select algorithm(s) for possible standardization, and/or may determine that a third phase of evaluation is needed. This third evaluation process would be structured similarly to the previous two evaluation periods. Any selected algorithm(s) for standardization will be incorporated into draft standards, which will be made available for public comment.

When evaluating algorithms, NIST will make every effort to obtain public input and will encourage the review of the submitted algorithms by outside organizations. NIST encourages the reviewers to demonstrate their findings and attacks both on the versions with parameters that achieve full security levels, as well as with practical attacks on the provided parameter sets with lower security levels. The final decision as to which (if any) algorithm(s) will be selected for standardization is the responsibility of NIST.

It should be noted that this schedule for the evaluation process is somewhat tentative, depending upon the type, quantity, and quality of the submissions. Specific conference dates and public comment periods will be announced at appropriate times in the future. NIST estimates that some algorithms could be selected for standardization after three to five years. However, due to developments in the field, this could change.

5.B	Technical Evaluation

NIST will invite public comments on all “complete and proper” submissions. The analysis done by NIST during the initial phase of evaluation is intended, at a minimum, to include:

i. Correctness check: The KAT values included with the submission will be used to test the correctness of the reference and optimized implementations, once they are compiled. (It is more likely that NIST will perform this check of the reference code—and possibly the optimized code as well—even before accepting the submission package as “complete and proper.”)

ii. Efficiency testing: Using the submitted optimized implementations, NIST intends to perform various computational efficiency tests. This could include, for example, the time required for key generation, encryption, decryption, digital signing, signature verification, or key establishment, as well as the size of keys, ciphertext, and signatures.

iii. Other testing: Other features of the submitted algorithms may be examined by NIST.

Platform and Compilers

The above tests will initially be performed by NIST on the NIST PQC Reference Platform, an Intel x64 running Windows or Linux and supporting the GCC compiler.

At a minimum, NIST intends to perform an efficiency analysis on the reference platform; however, NIST invites the public to conduct similar tests and compare results on additional platforms (e.g., 8-bit processors, digital signal processors, dedicated CMOS, etc.). NIST may also perform efficiency testing using additional platforms.

NIST welcomes comments regarding the efficiency of the submitted algorithms when implemented in hardware. During the second evaluation period, NIST may request specifications of some of the algorithms using a hardware description language, to compare the estimated hardware efficiency of the submitted algorithms.

Note: If the submitter chooses to submit updated optimized implementations prior to the beginning of the second round of evaluation, then some of the tests performed may be performed again using the new optimized implementations. This will be done to obtain updated measurements.

Note: Any changes to the NIST PQC Reference Platform will be noted on http://www.nist.gov/pqcrypto.

5.C	Initial Planning for the First PQC Standardization Conference

An open public conference will be held shortly after the end of the submission period, at which the submitters of each “complete and proper” submission package will be invited to publicly discuss and explain their submitted algorithm. The documentation for these algorithms will be made available at the conference. Details of the conference will be posted at http://www.nist.gov/pqcrypto.

Appreciation

NIST extends its appreciation to all submitters and those providing public comments during the post-quantum algorithm evaluation process.

Dated: xxx

22

The National Institute of Standards and Technology (NIST) has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in FIPS 186–4, Digital Signature Standard, as well as special publications SP 800-56A Revision 2, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography and SP 800-56B Revision 1, Recommendation for Pair-Wises Key-Establishment Schemes Using Integer Factorization Cryptography. However, these algorithms are vulnerable to attacks from large-scale quantum computers (see NISTIR 8105 Report on Post Quantum Cryptography). It is intended that the new public-key cryptography standards will specify one or more additional unclassified, publicly disclosed digital signature, public-key encryption, and key-establishment algorithms that are available worldwide, and are capable of protecting sensitive government information well into the foreseeable future, including after the advent of quantum computers.

As a first step in this process, NIST solicited public comment on draft minimum acceptability requirements, submission requirements, and evaluation criteria for candidate algorithms. The comments received are posted at http://www.nist.gov/pqcrypto, along with a summary of the changes made as a result of these comments.

The final submission requirements and the minimum acceptability requirements of a “complete and proper” candidate algorithm submission, as well as the evaluation criteria that will be used to appraise the candidate algorithms, can be found at http://www.nist.gov/pqcrypto. Nominations for post-quantum candidate algorithms may now be submitted, up until the final deadline of November 30, 2017. Complete instructions on how to submit a candidate package are posted at http://www.nist.gov/pqcrypto.

[bookmark: _GoBack]

Q: Does the requirement for ANSI C source code preclude the use of assembly language optimizations?

A: The optimized code required as part of the submission package should be ANSI C with no assembly (this includes inline assembly). This code is meant to be portable. If significant optimizations can be made with assembly, then it can be included as an additional implementation and discussed in the performance analysis.

Q: Will NIST consider platforms other than the “NIST PQC Reference Platform” when evaluating submissions?

A: The reference platform was defined in order to provide a common and ubiquitous platform to verify the execution of the code provided in the submissions. NIST will include performance metrics from a variety of platforms in our evaluation, including: 64-bit “desktop/server class”, 32-bit “mobile class”, microcontrollers (32-, 16-, and where possible, 8-bit), as well as hardware platforms (e.g., FPGA). Submitters are encouraged to provide additional implementations for these platforms if possible.

Q: In Sections 4.A.2 and 4.A.4, NIST’s CFP sets the number of decryption (resp. signature) queries, that an attacker against a proposed encryption (resp. signature) scheme can make, to at most 2 to the 64. What is the rationale for not letting the adversary make essentially as many queries as the target security?

A) Our reason for primarily considering attacks involving fewer than 2 to the 64 decryption/signature queries is that the number of queries is controlled by the amount of work the honest party is willing to do, which one would expect to be significantly less than the amount of work an attacker is willing to do. Any attack involving more queries than this looks more like a denial of service attack than an impersonation or key recovery attack. Furthermore, effectively protecting against online attacks requiring more than 2 to the 64 queries using NIST standards would require additional protections which are outside the scope of the present postquantum standardization effort, most notably the development of a block cipher with a block size larger than 128 bits. This may be something NIST pursues in the future, but we do not feel it is necessary for addressing the imminent threat of quantum computers. That said, as noted in the proposed call for algorithms, NIST is open to considering attacks involving more queries, and would certainly prefer algorithms that did not fail catastrophically if the attacker exceeds 2 to the 64 queries.

Q: What does NIST consider to be an acceptable rate of decryption/decapsulation failure?

A: NIST did not provide an explicit limit on the rate of decryption/decapsulation failure. In cases where a scheme is targeting chosen ciphertext security, decryption/decapsulation failures may pose a security threat. A failure rate sufficiently high to violate the claimed security of a scheme is, of course, unacceptable. If, on the other hand, there is a strong argument that decryption/decapsulation failures do not pose a security threat, then the decryption/decapsulation failure rate becomes simply one among many performance considerations. NIST does not wish, at this time, to prejudge what performance considerations are important, and will therefore leave it up to submitters to provide performance characteristics that they feel will be most useful for the applications they think best fit their schemes.

Q: Is the NIST PQC Standardization Process a competition?

A) This process shares many features with NIST competitions, and is modelled after the successes we have had with competitions in the past. There are, however, some important requirements that the current research climate demands we require for this process which constitute significant distinctions between this process and a competition.

First, our handling of the applicants does not coincide with a competition as specified in NISTIR 7977. There will not be a single “winner”. Our intention is to select a couple of options for more immediate standardization, as well as to eliminate some submissions as unsuitable. There will likely be some submissions that we do not select for standardization, but that we also do not eliminate and which may be excellent options for a specific application that we're not ready or don't have the contemporaneous resources to standardize. In such a circumstance, we would communicate with the submitters to allow these to remain under a public license for study and practice and to remain under consideration for future standardization. There is no specification for the handling of such an applicant in a competition.

	

Second, the state of the science in the competitions of the past, i.e. for the AES and SHA-3 competitions, was far more developed than for post-quantum cryptography. Though differences of opinion are inevitable, the selection of the past winners should not have been too surprising. The situation in post-quantum cryptography is less clear and opinions of required properties are less unanimous. In addition, some of NIST’s selection criteria, particularly regarding quantum security, may need further refinement in response to ongoing research.

In many respects, the PQC standardization process is less like a competition, and more like an “analysis of alternatives.” The goal of the process is not primarily to pick a winner, but to document the strengths and weaknesses of the different options, and to analyze the possible tradeoffs among them. In the end, even if there is not a final consensus on what constitutes the best option, NIST expects that it will be able to make some selections that most experts will agree are satisfactory.

Q: Why does NIST’s CFP ask submitters to provide a classical security analysis, when the intent is to plan for a world with quantum computers?

A: Classical cryptanalysis is still valuable for a number of reasons. First, classical computers are not going away. For algorithms not subject to dramatic quantum attacks, such as those involving Shor’s algorithm, NIST believes that classical measures of security will continue to be highly relevant. Currently envisioned quantum computing technologies would be orders of magnitude slower and more energy intensive than today’s classical computing technology, when performing the same sorts of operations. In addition, practical attacks typically must be run in parallel on large clusters of machines, which diminishes the speedup that can be achieved using Grover’s algorithm. When all of these considerations are taken into account, it becomes quite likely that variants of Grover’s algorithm will provide no advantage to an adversary wishing to perform a cryptanalytic attack that can be completed in a matter of years, or even decades. As most quantum attacks on proposed postquantum cryptosystems have involved some variant of Grover’s algorithm, it may be the case that the best attack in practice will simply be the classical attack.

Also, the science involved in assessing classical security is better developed than that for assessing quantum security, and there is a larger community of researchers who can contribute to these investigations, increasing our confidence in the security of the proposed cryptosystems. Finally, classical cryptanalysis can improve our understanding of the mathematical structures underlying these cryptosystems, which is also the basis for quantum cryptanalysis.

 Q: In section 4.A.5, it is stated that NIST will assume that its 5 security categories are correctly ordered (i.e. that a collision attack on SHA256 (resp. SHA384) will be harder to perform than a key search attack on AES192 (resp. AES 256.)) How realistic is this assumption?

A: Even assuming no disparity in the cost of quantum and classical gates, the assumption holds as long as the adversary is depth limited to fewer than about 287 logical quantum gates. This is quite near the limit of what NIST considers to be a plausible technology for the foreseeable future.

Q: How can submitters who aren’t experts in quantum cryptanalysis set their parameters?

A: Security strengths 1, 3, and 5 are defined in such a way that they are likely to be met by any scheme that:

· Provides classical security strength of 128, 192, and 256 bits, respectively, AND

· Is not subject to quantum attacks, other than classical attacks sped up by generic techniques (Grover’s algorithm, quantum walks, amplitude amplification etc.)

Security strengths 1,3, and 5 are unlikely to be met by any scheme with less than 128, 192 or 256 bits of classical security, respectively.

Security strengths 2 and 4 are defined in such a way that they offer the maximum possible quantum security strength that can be offered by a scheme that only has a classical security strength of 128 or 192 bits, respectively. They will generally be easier to meet with parameter sets offering more classical security. A detailed quantum security analysis will be required to determine whether a parameter set meets these security strengths (unless the parameter set also meets the criteria for the next higher security strength).

Q: What are the “standard conversion techniques” NIST will use to convert between public-key encryption schemes and KEMs?

A: To convert a public key encryption function to a KEM, NIST will construct the encapsulate function by generating a random key and encrypting it. The key generation and decapsulation functions of the KEM will be the same as the key generation and decryption functions of the original public key encryption scheme. To convert a KEM to a public key encryption scheme, NIST will construct the encryption function, by appending to the KEM ciphertext, an AES-GCM ciphertext of the plaintext message, with a randomly generated IV. The AES key will be the symmetric key output by the encapsulate function. (The key generation function will be identical to that for the original KEM, and the decryption function will be constructed by decapsulation followed by AES decryption.)

Q: NIST provided APIs and security definitions for Public Key encryption, KEM, and digital signature. Why are other functionalities not included?

A: NIST is looking primarily to replace quantum-vulnerable schemes with functionalities that are widely used, have widely agreed upon security and correctness definitions in academic literature, and for which there appear to be a range of promising approaches for designing a postquantum replacement. NIST considered a number of other functionalities, but did not provide explicit support for them, since it did not feel they met the above criteria as well as encryption, KEM, and signature. In many cases, NIST expects that schemes providing some of these functionalities may be submitted as a special case or an extension of one of the functionalities we explicitly asked for. In such a case, any additional functionality would be considered an advantage as noted in section 4.C.1 of our Call For Proposals. Two particular functionalities NIST considered were authenticated key exchange (AKE), and a drop in replacement for Diffie-Hellman.

Diffie-Hellman is an extremely widely used primitive, and has a number of potentially useful special features, such as asynchronous key exchange, and secure key use profiles ranging from static-static to ephemeral-ephemeral. However, NIST believes that in its most widely used applications, such as those requiring forward secrecy, Diffie-Hellman can be replaced by any secure KEM with an efficient key generation algorithm. The additional features of Diffie-Hellman may be useful in some applications, but there is no widely accepted security definition of which NIST is aware that captures everything one might want from a Diffie-Hellman replacement. Additionally, some plausibly important security properties of Diffie-Hellman, such as a secure, static-static key exchange, appear difficult to meet in the post-quantum setting. NIST therefore recommends that schemes sharing some or all of the desirable features of Diffie-Hellman be submitted as KEMs, while documenting any additional functionality.

[bookmark: _GoBack]AKE is also a widely used functionality. However, NIST would consider it a protocol rather than a scheme. This is an important distinction, because most widely used AKE protocols are constructed by combining simpler primitives, like digital signature, public key encryption, and KEM schemes. NIST wants to leave open the possibility that standards for these schemes may come from different submitters. Additionally, the security definitions for AKE are significantly more complicated and contentious than those for the functionalities NIST is explicitly asking for in its call for proposals. NIST recognizes that there are some AKE functionalities, in particular implicitly authenticated key exchange (IAKE), that cannot easily be constructed from simpler components. While it is less natural to treat IAKE schemes as an extension of the KEM framework, than it is for Diffie-Hellman-like primitives, NIST does believe that it can be done in most cases. For example, a significant part of the functionality of a 2-message IAKE protocol could be demonstrated by treating the initiator’s public authentication key as part of a KEM public key, and the responder’s public authentication key as part of the KEM ciphertext.

Remove (and archive) the Q: What is the rationale to convert time and space complexity of known attacks into a single number for quantum and classical security?

Note – ref [3] is cited by this Q, so can be removed (and put in the archive) also.

Perhaps only display the Q’s, and expand the answers if desired?

PQC - API notes

Most of the API information is derived from the eBATS: ECRYPT Benchmarking of Asymmetric Systems (https://bench.cr.yp.to/ebats.html). This has been done to facilitate benchmarking algorithm performance. Please look at the eBATS page for more information on how to submit an algorithm for performance benchmarking. There are two sets of API calls listed for each primitive. The first set is the API call directly from the eBATS page, or something very similar for the Key Encapsulation Mechanism section. The second set of calls is for testing purposes. The calls extend the eBATS calls for functions that utilize randomness by providing a pointer to specify a randomness string. This will allow algorithms that utilize randomness to be able to provide reproducible results. For example, this will allow testing of KAT files and other sample values.

Public-key Signatures

See https://bench.cr.yp.to/call-sign.html for more information on Public-key Signature API and performance testing.

The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):

 #define CRYPTO_SECRETKEYBYTES 256

 #define CRYPTO_PUBLICKEYBYTES 85

 #define CRYPTO_BYTES 128

 #define CRYPTO_RANDOMBYTES 64

indicating that your software uses a 256-byte (2048-bit) secret key, an 85-byte (680-bit) public key, at most 128 bytes of overhead in a signed message compared to the original message, and 64 bytes of random input.

Then create a file called sign.c with the following function calls:

	eBATS calls

		Generates a keypair - pk is the public key and sk is the secret key.

		int crypto_sign_keypair(

			unsigned char *pk,

			unsigned char *sk

)

Sign a message: sm is the signed message, m is the original message, and sk is the secret key.

		int crypto_sign(

			unsigned char *sm, unsigned long long *smlen,

			const unsigned char *m, unsigned long long mlen,

			const unsigned char *sk

)

Verify a message signature: m is the original message, sm is the signed message, pk is the public key.

		int crypto_sign_open(

			const unsigned char *m, unsigned long long *mlen,

			const unsigned char *sm, unsigned long long smlen,

			const unsigned char *pk

)

	KAT calls

		int crypto_sign_keypair_KAT(

			unsigned char *pk,

			unsigned char *sk,

			const unsigned char *randomness

)

		int crypto_sign_KAT(

			unsigned char *sm, unsigned long long *smlen,

			const unsigned char *m, unsigned long long mlen,

			const unsigned char *sk,

			const unsigned char *randomness

)

Public-key Encryption

See https://bench.cr.yp.to/call-encrypt.html for more information on Public-key Encryption API and performance testing.

The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):

 #define CRYPTO_SECRETKEYBYTES 256

 #define CRYPTO_PUBLICKEYBYTES 64

 #define CRYPTO_BYTES 48

 #define CRYPTO_RANDOMBYTES 64

indicating that your software uses a 256-byte (2048-bit) secret key, a 64-byte (512-bit) public key, at most 48 bytes of overhead in an encrypted message compared to the original message, and 64 bytes of random input.

Then create a file called encrypt.c with the following function calls:

	eBATS calls

		Generates a keypair - pk is the public key and sk is the secret key.

		int crypto_encrypt_keypair(

			unsigned char *pk,

			unsigned char *sk

)

		Encrypt a plaintext: c is the ciphertext, m is the plaintext, and pk is the public key.

		int crypto_encrypt(

			unsigned char *c, unsigned long long *clen,

			const unsigned char *m, unsigned long long mlen,

			const unsigned char *pk

)

		Decrypt a ciphertext: m is the plaintext, c is the ciphertext, and sk is the secret key.

		int crypto_encrypt_open(

			unsigned char *m, unsigned long long *mlen,

			const unsigned char *c, unsigned long long clen,

			const unsigned char *sk

)

	KAT calls

		int crypto_encrypt_keypair_KAT(

			unsigned char *pk,

			unsigned char *sk,

			const unsigned char *randomness

)

		int crypto_encrypt_KAT(

			unsigned char *c, unsigned long long *clen,

			const unsigned char *m, unsigned long long mlen,

			const unsigned char *pk,

			const unsigned char *randomness

)

Key Encapsulation Mechanism (KEM)

The calls in the eBATS specification do not meet the calls specified in the call for algorithms. However, attempts were made to match the specifications for the other algorithms.

The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):

 #define CRYPTO_SECRETKEYBYTES 192

 #define CRYPTO_PUBLICKEYBYTES 64

 #define CRYPTO_BYTES 64

 #define CRYPTO_CIPHERTEXTBYTES 128

 #define CRYPTO_RANDOMBYTES 64

indicating that your software uses a 192-byte (1536-bit) secret key, a 64-byte (512-bit) public key, a 64-byte (512-bit) shared secret, at most a 128-byte (1024-bit) ciphertext, and 64 bytes of random input.

Then create a file called kem.c with the following function calls:

	eBATS-like calls

		Generates a keypair - pk is the public key and sk is the secret key.

		int crypto_kem_keygenerate(

			unsigned char *pk,

			unsigned char *sk

)

Encapsulate - pk is the public key, ct is a key encapsulation message (ciphertext), ss is the shared secret.

		int crypto_kem_encapsulate(

			unsigned char *ct,

			unsigned char *ss,

			const unsigned char *pk

)

Decapsulate - ct is a key encapsulation message (ciphertext), sk is the private key, ss is the shared secret

		int crypto_kem_decapsulate(

			unsigned char *ss,

			const unsigned char *ct,

			const unsigned char *sk

)

	KAT calls

		int crypto_kem_keygenerate_KAT(

			unsigned char *pk,

			unsigned char *sk,

			const unsigned char *randomness

)

		int crypto_kem_encapsulate_KAT(

			unsigned char *ct,

			unsigned char *ss,

			const unsigned char *pk,

			const unsigned char *randomness

)

Dear Ms. Chen,

Thank you for the opportunity to submit comments on the Submission Requirements and Evaluation Criteria to be used in NIST’s process for standardizing quantum-resistant public-key cryptographic algorithms.

Mozilla’s mission as a non-profit organization is to promote openness, innovation, and opportunity online. Protecting the security of Internet communications is a core part of that mission. Mozilla is a major user of cryptographic standards. Our products engage in billions of HTTPS transactions per day, and we maintain of one the most widely used open-source cryptographic libraries. We are also deeply involved in the standardization of cryptographic protocols in the IETF. Eric Rescorla, a Mozilla fellow, is editor of the TLS specification, Richard Barnes is a former member of the Internet Engineering Steering Group, and several other Mozilla staff are active in cryptography-related IETF working groups. It is from this perspective that we offer our comments.

Our primary concern with the proposed process is that it needs to ensure that the algorithms standardized through it work in the real world. The draft documents provided for comment present problems at both legal and technical levels.

1. Submitted algorithms must be usable without compensation to patent holders (RAND-Z, not only RAND) and implementations must bear an open-source license

The draft Call for Proposals is correct to note that “royalty-free availability of cryptosystems and implementations has facilitated adoption”. It is surprising that this observation is followed by allowances for royalty-bearing cryptosystems, e.g., in the Statement by Patent Owners 2.D.2. Allowing royalty-bearing cryptosystems to be submitted will inhibit both the thorough evaluation of proposals and their eventual adoption by industry.

As the draft CFP acknowledges in several places, contributions by the broader research community will be essential in helping NIST make a thorough evaluation of the submitted algorithms. In order to make these contributions, members of the community including researchers in the commercial and academic sectors will need be able to implement the submitted algorithms. A requirement to license patents for such implementations would make it impossible for many researchers to participate in evaluation of algorithms, undermining the completeness and the legitimacy of the NIST process.

In this context, it should be noted that U.S. Courts have all but eliminated the availability of the “experimental use defense” to patent infringement: “[R]egardless of whether a particular institution or entity is engaged in an endeavor for commercial gain, so long as the act is in furtherance of the alleged infringer’s legitimate business and is not solely for amusement, to satisfy idle curiosity, or for strictly philosophical inquiry, the act does not qualify for the very narrow and strictly limited experimental use defense. Moreover, the profit or non-profit status of the user is not determinative.” Madey v. Duke Univ., 307 F.3d 1351, 1362 (Fed. Cir. 2002) (finding university’s research projects with no commercial application still “unmistakably further the institution's legitimate business objectives” in education). (See also Soitec, S.A. v. Silicon Genesis Corp., 81 Fed.Appx. 734, 737 (Fed.Cir. 2003), “There is no fair use or research and development exception for infringement of normal commercial processes.”)

There is also a need for researchers to be able to use and modify the submitted implementations in order to evaluate the costs and benefits of the algorithm in different contexts. For example, a researcher might adapt the optimized implementation to run on a machine architecture common in mobile devices to see if the algorithm is suitable for use in that environment. In order to allow this usage, it is imperative that the submitted implementations be licensed under an open-source license, and in particular one that allows for the creation of derivative works. We encourage NIST to specify a small set of acceptable open-source licenses. There are several such licenses available: Many of the policies in the US CIO’s list of licensing resources recommend the CC0 or CC-BY licenses; we would also find licenses such as the MIT, BSD, Mozilla Public License, or Apache Public License acceptable.

Standardization of a royalty-bearing algorithm would strongly inhibit industry adoption of the algorithm, especially in open standards organizations and open-source projects. The IETF has historically avoided standardization of royalty-bearing algorithms, so it would be difficult to establish the ancillary protocol standards needed to integrate a NIST-standard algorithm into Internet protocols.

Open source projects such as OpenSSL and NSS are critical to the deployment of cryptographic protocols on the Internet. These projects are often unable to use algorithms that are only available through royalty-bearing licenses. In particular, it would be extremely difficult for Mozilla to include a royalty-bearing algorithm in its products (including Firefox) even if it were standardized by NIST. The only use of royalty-bearing technologies in Firefox today (the H.264 video codec) was only possible because an existing license holder offered to cover royalty costs for Firefox users and because significant engineering effort was spent enabling the codec to be distributed within the terms of the license.

2. Algorithms need to be evaluated as they will be used

It is crucial for the success of this process that NIST not evaluate submitted algorithms in the abstract, but as they will be deployed in modern information security systems. To that end, we are glad to see that the evaluation criteria place the impact on Internet protocols as a primary measure of an algorithm’s utility.

Along these lines, it should be noted that verifying that an algorithm is IND-CCA2 secure in the abstract might not mean that it provides this level of security in practice. For example, if there are assumptions underlying the IND-CCA2 proof that a protocol cannot meet, then the algorithm might not provide an acceptable level of security for that protocol. The evaluation criteria should make clear that algorithms must not rely on assumptions in security proofs that cannot be satisfied by common security protocols.

While we agree with NIST’s choice to rule hybrid algorithms out of scope for this process, it is nonetheless true that hybrid algorithms will be an important part of the deployment process for post-quantum algorithms. We encourage NIST to consider the suitability of algorithms for use in hybrid schemes as an evaluation criterion, with preference for algorithms that are more amenable to hybridization.

Looking at how public-key algorithms are used in modern Internet protocols, it is clear that key establishment and signature are much more important features to implement than public-key encryption. Forward secrecy in particular has been a feature that the community of TLS operators has worked very hard to make pervasive, in order to guard against temporary compromises. Even messaging security protocols, which have traditionally relied fairly heavily on public-key encryption, have been moving toward frameworks that provide more forward secrecy by relying more on key establishment instead of public-key encryption. We would be comfortable if NIST de-emphasized or dropped public-key encryption from evaluation, especially given that in many cases, it can be replaced by a combination of key establishment and symmetric encryption.

Finally, the selection of x64 as a reference platform is understandable, but perhaps not a complete reflection of modern computing environments. It is increasingly common for cryptography to be done on mobile devices, mostly using ARM architectures, and operators are increasingly selecting algorithms based on their performance in mobile environments (e.g., preferring ChaCha20 over AES). Emerging platforms for the Internet of Things will likely be bringing similar constraints in the near future. We would encourage NIST to include one or more mobile and/or IoT platforms in their evaluations, either directly or by working with the community to ensure that algorithms are evaluated in these contexts.

We are grateful to the NIST for the opportunity to comment on on this process. We look forward to working with NIST and the broader community to ensure that the Internet can be kept secure even if quantum cryptanalysis becomes feasible.

Respectfully submitted,

Richard Barnes, Firefox Security Lead

James Jones, Cryptographic Engineering Manager

Dear Dr. Chen,

Congratulations on initiating a standardization effort for post-quantum cryptography. In general the effort sounds useful and carefully planned, and I look forward to providing whatever assistance I can.

I have comments on several topics, which I have tried to sort here into decreasing order of importance.

1. Quantitatively comparing post-quantum public-key security levels is going to be a nightmare. I see only two ways that submitters a year from now can possibly be "confident that the specified security target is met or exceeded": (1) overkill; (2) overconfidence. Many users will not be satisfied with overkill, and NIST should not encourage overconfidence.

For comparison, let's ignore quantum computers for a moment. Imagine asking someone to choose DSA key sizes to be confident about reaching a pre-quantum 2^256 security target, the largest number in NIST's list of preselected security levels. Should be easy, right?

Here are some costs in the literature for computing multiplicative-group discrete logarithms by NFS index calculus, and thus breaking DSA:

· Exponent 2.080 from 1992 Gordon. What I mean here is that the cost is asymptotically L^(2.080...+o(1)), assuming standard conjectures, with the usual definition of L in NFS.

· Exponent 1.922 from 1993 Schirokauer.

· Exponent 1.901 from 2003 Matyukhin.

· Exponent 1.442 per target from 2006 Commeine--Semaev, after per-prime precomputation with exponent 1.901.

· Exponent 1.231 per target from 2013 Barbulescu, after per-prime precomputation with exponent 1.638, after one-time precomputation with exponent 1.901. (I doubt that 1.231 is optimal.)

All of these are exponents in an unrealistic model of computation where storage and communication are free. In a realistic model, I presume that 1.901 would go up to 1.976 by an adaptation of a factorization algorithm that I published in 2001, and 1.638 would go up to 1.704 for a batch of targets by an adaptation of my 2014 "Batch NFS" paper with Lange. I don't know what would happen to the 1.231.

One might try to argue that the 1.901 and 1.976 have been stable for a decade, and that multi-target attacks don't matter. But NIST's call explicitly, and sensibly, asks for "resistance to multi-key attacks". Multi-target attacks _do_ matter, and the current _exponent_ for the security of DSA against these attacks is only three years old.

Furthermore, a closer look shows that there are many more improvements that reduce concrete attack costs by reducing the "o(1)" quantities. Sloppily replacing o(1) with 0, as NIST apparently did to obtain its current recommendation of 15360 bits for DSA for >=2^256 security, is unjustified. Even for the simple case of single-key attacks, figuring out the o(1) with moderate precision at such large sizes is a difficult research project, extrapolating far beyond experimental ranges. At this point I wouldn't hazard a guess as to whether NIST's 2^256 is an overestimate or an underestimate.

If someone makes enough progress on this research project to announce that the single-key attack cost is actually between 2^245 and 2^250, will NIST withdraw its DSA standard? (What if there is a 2^100 attack against RSA-2048, rather than the commonly quoted 2^112?) If not, then what exactly is the point of asking people to be "confident" that 2^256 is "met or exceeded"? More to the point, experts are _not_ confident, even when multi-target attacks are ignored.

Some people are even more worried by the recent drastic reduction of security levels for pairing-based cryptography, by other index-calculus optimizations. Fortunately, DSA conservatively chose prime fields, avoiding the subfield/automorphism structures exploited in the latest attacks (and in the most complicated previous variants of NFS---one of the warning signals that led ECRYPT to recommend prime fields a decade ago). But the bigger picture is that index calculus is complicated and constantly improving. Would it really be so surprising to see another security loss that _does_ affect DSA?

keylength.com reports some sources making recommendations around the same 15360-bit level recommended by NIST, but also reports Lenstra and Verheul recommending 26000 or 50000 bits. The big difference here is Lenstra and Verheul leaving a security margin in case there is progress in cryptanalysis.

So, with all these numbers in mind, how should we choose DSA key sizes to be "confident" about >=2^256 pre-quantum security? Should we take NIST's overconfident 15360 bits, which definitely flunks the multi-key requirement, and isn't a solid bet even for a single key? How about 26000 bits? 50000 bits? Much bigger, considering Barbulescu's 1.231? What happens if 1.231 is improved further?

What NIST is asking post-quantum submitters to figure out is far more difficult than this DSA example, for several reasons:

· As one would expect given the history of how cryptanalytic effort has been allocated, the security picture for most post-quantum public-key algorithms is even less stable than the security picture or DSA. Example: Current algorithms for the famous shortest-vector problem take (conjecturally) time 2^((0.29...+o(1))d) in dimension d, a vast improvement compared to 2^((0.40...+o(1))d), the best result known just a few years ago.

· At this point we have only crude guesses as to the ultimate costs of different quantum operations. I understand that NIST wants to define 2^b post-quantum security as 2^b quantum AES computations, but what is the relative cost of a quantum AES computation and a lookup in an N-entry table using a quantum index? How does this depend on N? How much harder is it if the table entries are themselves quantum?

· I agree with NIST's comment that a 256-bit preimage search with Grover is actually harder than a 256-bit collision search (even if qubits are magically as cheap as bits), since Grover parallelizes poorly. I agree that the optimum value of T*sqrt(S), subject to ST=2^128 and T>=sqrt(S), is 2^(2*128/3). But T*sqrt(S) is not a user-comprehensible cost metric, and not a metric for which many subroutines have been analyzed.

· Algorithm designers benefit tremendously from being able to try out their algorithms on small-scale and medium-scale problems. An experiment can show with minimal effort that an algorithm doesn't produce the desired outputs, or that it doesn't run at the desired speed. Designers of quantum algorithms don't have this tool yet.

· How is a submitter supposed to be confident of reaching, e.g., 2^128 post-quantum security? Submitters will end up making ill-informed random guesses of which parameters to assign to which security levels. Security analysis will then throw some submissions into the Scylla of being "broken", while others will have thrown themselves into the Charybdis of being "inefficient", even though those submissions might simultaneously be _more secure and more efficient_ than other submissions that simply happened to make luckier initial guesses of target security levels.

To summarize: Well-informed long-term security assessments will not simply supersede obsolete guesswork. The guesswork will continue having an influence long after it should have been thrown away. This is a serious failure mode for the evaluation process.

Does "meet or exceed each of five target security strengths" mean that each submission has to separately target all five levels, giving designers five chances to be artificially thrown into the rocks? Is it enough to target just the top level, namely 2^256 pre-quantum security and 2^128 post-quantum security?

I found it particularly striking that this choice of top target security level was based on the security achieved by a secret-key system (in this case AES-256, for some reason ignoring multi-target attacks), rather than on any attempt to assess what users actually need. I'm reminded of the ludicrous requirement of 2^512 preimage resistance for SHA-3, forcing permutation-based SHA-3 submissions such as Keccak to be much larger and slower than they would otherwise have been.

If a public-key system naturally has 2^2b pre-quantum security and more than 2^b post-quantum security (I predict that this will be a common case), then choosing parameters to successfully target 2^256 pre-quantum security will be overkill for 2^128 post-quantum security---and also overkill for what users actually need. Why is this a sensible target?

If a public-key system naturally has 2^b post-quantum security and more than 2^2b pre-quantum security (I know one example like this), then choosing parameters to successfully target 2^128 post-quantum security will be overkill for 2^256 pre-quantum security. Why should the designer have to bother evaluating the pre-quantum security level?

Let me suggest a different approach:

· Leave it up to submitters to decide exactly what post-quantum security level to aim for.

· Tell them that security levels <2^64 will be viewed as "breakable", and that security levels >2^128 are unlikely to be viewed as more valuable than security level 2^128, except possibly as a buffer against future cryptanalytic progress.

· Ask them to do the most accurate job that they can of analyzing post-quantum security. Don't ask for fake confidence.

· Scrap the requirement of a pre-quantum security analysis. Users will use cheap ECC hybrids to obtain the pre-quantum security that they want.

Of course, many submissions will do a pre-quantum security analysis and then say "We don't think Grover will reduce the exponent by a factor beyond 2". Is there any problem with this? Should the number of submissions be limited by the current availability of expertise in quantum cryptanalysis?

Followup analysis will improve our understanding of the actual post-quantum security levels of various algorithms, and then NIST will look at a two-dimensional plot of speed vs. security level and decide which options are most interesting.

2. My understanding is that NIST is asking for two specific types of encryption, which NIST labels as "public-key encryption" and "key exchange". This is too narrow: it omits important variants of public-key encryption that people should be allowed to submit.

What I suspect will be most important in the long run is a CCA2-secure "KEM". A KEM can be viewed as a limited form of public-key encryption: the only thing a ciphertext can do is to communicate a random session key. As a simple pre-quantum example, Shoup's "RSA-KEM" chooses a random number r mod pq and transmits a session key SHA-256(r) as the ciphertext r^3 mod pq. This is easier to design and analyze and implement than, say, RSA-OAEP.

(Proponents of RSA-OAEP will respond that RSA-OAEP can encrypt a short user-specified message as a ciphertext with the same length as pq. Some applications will notice the bandwidth difference. Obviously NIST should continue to allow public-key encryption as a target.)

One can easily combine a KEM with an authenticated cipher to produce a full-fledged public-key encryption scheme. But this understates the utility of a KEM: the same session key can be reused to encrypt any number of messages in both directions, whereas wrapping the KEM in a public-key encryption scheme hides this functionality. Using this public-key encryption scheme to encrypt another level of a shared session key would be frivolous extra complexity. Why not let submitters simply submit a KEM, skipping the cipher?

Sometimes people reduce the security goals and design KEMs to encrypt just one message, _without_ chosen-ciphertext security. Here is the application to keep in mind:

· a client generates a KEM public key;

· a server uses this to transmit a random session key;

· messages are signed by long-term keys for authentication;

· the KEM private key and session key are erased after the session.

This is how New Hope works inside TLS. The signatures (if handled properly) prevent attackers from choosing any ciphertexts. So why not let people submit single-message non-CCA2-secure KEMs?

(I don't like the TLS/SIGMA approach to secure sessions: it is error-prone and excessively complex. This is not a broadcast scenario; authentication does not require signatures. I prefer the simplicity of using pure encryption: the long-term key is an encryption key, and the soon-to-be-erased short-term key is another encryption key. This requires multiple-message support and CCA2 security, but my current impression is that this robustness has only minor costs, and I wouldn't be surprised if the New Hope team decides to move in this direction. However, if they instead decide that CCA2 security is too expensive, they shouldn't be rejected for targeting TLS!)

What NIST calls "key exchange" in the draft sounds to me like a poorly labeled KEM with intermediate security requirements: chosen-ciphertext security seems to be required, but the interface sounds like it allows only one message before the key is thrown away. NIST should make clear if it instead meant a full-fledged KEM allowing any number of ciphertexts. Either way, NIST should explicitly allow non-CCA2-secure single-message KEMs such as New Hope.

Calling any of these systems "key exchange" is deceptive for people who expect "key exchange" to be a drop-in replacement for DH key exchange. In DH, Alice and Bob both know a shared secret as soon as they see public keys from Bob and Alice respectively, with no additional communication. As a concrete example, consider the very small number of network round trips needed to efficiently authenticate data from hidden client identities in the "CurveCP" and "Noise_XK" protocols. Here's Noise_XK using ECC:

· Alice sends her ephemeral public key eG to Bob. New session key: hash of ebG, where b is Bob's long-term key.

· Bob responds with his ephemeral public key fG, encrypted and authenticated. New session key: hash of ebG and efG.

· Alice sends her long-term public key aG to Bob, encrypted and authenticated. New session key: hash of ebG, efG, and afG.

This third packet can already include data authenticated under the last session key, and Bob immediately knows that the data is from Alice. Pure public-key encryption (without signatures) needs another round trip for authentication: Bob has to send data to Alice's long-term public key and see the reply before Bob knows it's Alice talking.

There is one notable post-quantum example of the DH data flow, namely isogeny-based crypto. Security analysis of isogeny-based crypto is clearly in its infancy, but if isogeny-based crypto does survive then the data flow will be an interesting feature. People who submit isogeny-based crypto should be allowed to submit it in a way that makes this data flow clear, rather than having to wrap it in public-key encryption.

I understand that for signatures NIST explicitly decided to disallow one data flow of clear interest, namely stateful signatures, since there is already separate ongoing standardization of stateful hash-based signatures, which are the main reason for interest in this data flow. (The security of hash-based signatures is much better understood than the security of most other public-key systems.) But for encryption I don't see how a similar limitation could be justified.

To summarize, there are at least three clearly different types of data flow of interest: public-key encryption, KEMs, and DH. Within KEMs, there are at least two security targets of interest: passive security for one message, and chosen-ciphertext security for many messages. I suggest that NIST explicitly allow

· all four of these targets;

· also the intermediate type of KEM labeled as "key exchange" in the current draft, if NIST has an application in mind; and

· any further encryption targets that NIST identifies this year as being useful.

I also suggest defining some standard conversions that NIST will apply automatically: e.g., converting a CCA2-secure KEM into CCA2-secure PKE by composition with AES-256-GCM, and converting the other way by encrypting a random 256-bit key. NIST won't want to listen to pointless arguments such as "yes we know we're worse than this PKE but it wasn't submitted to the KEM category" from KEM submitters, and won't want to have to wade through artificially bloated PKE+KEM submissions that are really just one design but want to compete in every category.

3. I have three suggestions regarding terminology.

First, the draft refers frequently to "key exchange", which as noted above ends up deceiving people. I suggest scrapping this terminology in favor of more precise terminology such as KEM and DH. (There's already a NIST standard introducing relevant names such as "C(0,2)", but I don't know how many people are familiar with these names.)

Second, the draft uses "forward secrecy" (even worse, "perfect forward secrecy") to refer to the obvious security benefits of erasing a private key. This terminology also ends up deceiving people. Last week I was speaking with a banker who thought that TLS's "perfect forward secrecy" would protect his communications against future quantum computers. I suggest avoiding this terminology and instead saying something like "Fast key generation is useful for high-frequency generation of new key pairs, which in turn allows each private key to be promptly erased."

Third, the draft says that post-quantum cryptography is "also called quantum-resistant or quantum-safe cryptography", and makes occasional use of the "quantum-resistant" terminology after that. It's true that Google finds some hits for "quantum-resistant cryptography" and "quantum-safe cryptography" (1630 and 4340, compared to 47100 for "post-quantum cryptography"), but I'm not at all sure that the people using these terms are using them with the same meaning as post-quantum cryptography, and I predict that users seeing algorithms labeled as "resistant" and "safe" will be deceived into thinking that we are more confident than can be scientifically justified.

As a concrete example, research by Makarov et al. has convincingly shown that ID Quantique's QKD products are breakable at low cost, but one of the top hits for "quantum-safe cryptography" appears to refer to those products as "provably secure quantum-safe" cryptography. I presume that snake-oil peddlers choose this terminology precisely because it is deceptive; for the same reason, I suggest that NIST avoid the terminology. As an analogy, FIPS 186-4 has the sensible title "Digital signature standard", not "Safe digital signature standard" or "Attack-resistant digital signature standard".

4. Requiring submissions to be sent by postal mail will penalize some submitters for reasons that are not connected to the quality of their submissions. For example, as far as I know, the lowest-cost way to guarantee two-day delivery of a 1kg package from Bangalore to NIST is a Fedex International Priority Pak, which costs half a week's salary for a typical Indian professor.

I understand that NIST needs a signed printed statement regarding patents etc., but this statement is not urgent: it can be sent by mail later, or hand-delivered to NIST at the first workshop.

On a related note, requiring fax numbers and telephone numbers is silly.

5. The draft needs a general round of proofreading. For example, Wiener is not "Weiner", the JoC97 link does not work, and 4.B.4 is incomplete.

---D. J. Bernstein

University of Illinois, Chicago

I think my main comment about the draft NIST call is that they need to be careful with their discussion following the target security strengths listed in section 4.A.4. It's important that they make it absolutely clear that this discussion is about parallelisation of *quantum* attacks and is not applicable to classical attacks. This is particularly true of the clause "... NIST recognizes that extremely serial or extremely parallel attacks (e.g., those that have a time depth or space complexity exceeding 2^100) may be of minimal practical importance". The danger is that someone reading this might incorrectly interpret it as a giving a memory bound for classical attacks. Given recent heated arguments around the NTRUPrime security analysis, this should be avoided if at all possible. For example, it might be better to remove the specific figure 2^100 from the clause above. (On the other hand, if NIST do intend to give a memory bound then it should be applied consistently to *all* large-memory attacks.)

Peter Campbell

CESG

To whom it may concern:

I have read through the proposed document and supporting materials and have two comments:

1 --

In section 2.C.1 (Implementations) Submitting an implementation solely on the Intel x64 processor ignores the vast and ever-growing population of smaller processors that make up the Internet of Things. Quantum-resistant solutions optimized for such a capable machine may not scale down to 8 or 16 bit microcontrollers. To that end we propose that you include such smaller devices (e.g. 16-bit MSP430, and 8-bit 8051 and/or AVR8) in your testing and evaluation.

2 --

The proposed testing API is extremely problematic. Specifically, it assumes that Keys and Signatures are a constant size. There are definitely real algorithms where this is not the case, and each keypair (and signature) generated requires dynamic memory. In order to apply these variable-length algorithms to the process would require a change to the testing API that allows for dynamic sizes.

We see two possibilities to handle this extremely important use case:

1 Set the sizes so high as to be sure to include even the largest possible keys/signatures. The problem is that this would necessarily increase the amount of memory/storage required, and it's still potentially possible to hit a sample that goes beyond the boundaries, in which case the system either has to try again or give up.

2 Fix the APIs themselves to handle dynamic-size responses. This would allow an algorithm to return data objects of varying lengths.

We would encourage taking approach #2.

To this end we would propose a change to the API that enables dynamic responses, perhaps something like the following (with similar changes for the KAT versions):

typedef struct {unsigned long long len; unsigned char* buf;}buffer_t;

typedef buffer_t PublicKey;

typedef buffer_t PrivateKey;

typedef buffer_t Signature;

int crypto_sign_keypair_dyn(

PublicKey* pk,

PrivateKey* sk

);

int crypto_sign_dyn(

Signature *sig,

const unsigned char *m, unsigned long long mlen,

const PrivateKey sk

);

int crypto_sign_open_dyn(

const unsigned char *m, unsigned long long mlen,

const Signature sig,

const PublicKey pk

);

void free_buffer(buffer_t buf);

Thanks for your consideration,

Derek Atkins

Chief Technology Officer

SecureRF Corporation

Comments and questions on the NIST call for PQC standards.

Proposed Minimum Acceptability Requirements

For Part 2,

what if the submission infringes on others’ patent or patent application and does not disclose it?

In Part 4, it says:

“The submission package shall provide concrete values for any parameters and settings required to meet or exceed (to the best of the submitter’s knowledge) the relevant security targets in Section 4.A.4, for the appropriate security models in Sections 4.A.2 and 4.A.3.”

Does this mean for each security targets, a submission can have more than 1 set of parameters?

Must each submission submit at least one set of parameters for each security target?

Proposed Evaluation Criteria

4.A.4 Target Security Strengths,

Should the memory complexity be taken into account for classical attacks? If an attack on a scheme requires an tremendous memory, can it be considered secure?

For the quantum attack, should the number of quantum bits need be considered?

4.C Algorithm and Implementation Characteristics

How about the versification of the implementations? Should the implementations be easily versified that it indeed implements what is theoretical requires? (Like sampling etc?)

4.B.4 Decryption Failures

“Some public-key encryption algorithms, even when correctly implemented, will occasionally produce ciphertexts that cannot be decrypted. For most”

What is the threshold for decryption failure?

Jintai Ding

University of Cincinatti

Dear NIST,

I have the following two suggestions.

1. For the part "Algorithm Specifications And Supporting Documentation".

In Section 2.B.1. paragraph 3 the current text is:

"To facilitate the analysis of these algorithms by the cryptographic community, submitters are encouraged to also specify parameter sets that provide lower security levels, and to provide concrete examples that demonstrate how certain parameter settings affect the feasibility of known cryptanalytic attacks."

I suggest this sentence to be moved as a separate section that states the following:

"To facilitate the analysis of the submitted algorithms by the cryptographic community, submitters are required to specify parameter sets that provide lower security levels, and to provide concrete examples that demonstrate how certain parameter settings affect the feasibility of known cryptanalytic attacks."

2. Then in connection with this change, in the part "Proposed Evaluation Process" in Section 5.A the paragraph

"When evaluating algorithms, NIST will make every effort to obtain public input and will encourage the review of the submitted algorithms by outside organizations; however, the final decision as to which (if any) algorithm(s) will be selected for standardization is the responsibility of NIST."

to be changed to the following paragraph

"When evaluating algorithms, NIST will make every effort to obtain public input and will encourage the review of the submitted algorithms by outside organizations; NIST encourages the reviewers to demonstrate their findings and attacks both on the versions with parameters that achieve full security levels, as well as on the provided parameter sets with lower security levels; however, the final decision as to which (if any) algorithm(s) will be selected for standardization is the responsibility of NIST."

Rationale for these suggestions:

NIST crypto competitions are highly respected events in the cryptographic and information security community. It is a prestige to participate in the competition and to publish attacks on the proposed algorithms. In the heat of the debates and the competition, there will be a lot of overrated attacks that actually are not so efficient as the attackers would claim. I am proposing the above changes in order to protect the dignity of both the submitters and the attackers and to save a precious time and efforts by the NIST employees and the whole crypto community. If in the submission documentation there are obligatory test parameters that have very low security margin, any published attack on the schemes is encouraged to be demonstrated *practically* on those low level parameters. That will be seen as a correct and honest attempt to analyze the scheme, not just as a malicious attempt to discredit the attacked algorithm.

Best regards,

Danilo Gligoroski

Norwegian University of Science and Technology (NTNU)

Hello,

I have one comment on the document « Proposed Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process ».

In Section 4.A.4, five target security strengths are listed. On security strength 2 and 4, it is explained that the reference is brute-force collision attacks against SHA-256/SHA3-256 and SHA-384/SHA3-384.

However, in the paper « Cost analysis of hash collisions : Will quantum computers make SHARCS obsolete ? » by Daniel J. Bernstein (https://cr.yp.to/hash/collisioncost-20090517.pdf), it is explained that :

« There is a popular myth that the Brassard-Hoyer-Tapp algorithm reduces the cost of b-bit hash collisions from 2^(b/2) to 2^(b/3); this myth rests on a nonsensical notion of cost and is debunked in this paper. »

And later in the same paper :

« The best time claimed by Brassard, Hoyer, and Tapp in [6], and by Grover and Rudolph in [10]|is 2(b/2) /M^(1/2) on a size-M quantum computer. »

Based on this paper, it would mean that:

- For level 2 : 128 bits classical security /80 bits quantum security with the reference to a quantum brute-force collision attack on SHA-256/SHA3-256 would require a quantum computer of size 2^96 to find a collision on SHA-256/SHA3-256.

- For level 4 : 192 bits classical security / 128 bits quantum security with the reference to a quantum brute-force collision attack on SHA-384/SHA3-384 would require a quantum computer of size 2^128 to find a collision on SHA-384/SHA3-384

My comment is that a clarification seems needed on the meaning of the target security strengths 2 and 4, assuming that they are kept in the final version.

Regards

Aline Gouget

Gemalto

Maybe NIST could consider another set of evaluation critera, resistance against traditional physical attacks. Something, along the line described below.

--- ---

Implementation issues – Traditional attacks

The algorithm has to have a reasonably complex implementation, which resists known (published) types of physical attacks, with documented exceptions. The document describing exceptions tells, in what type of environment the implementation works safely, and what kind of physical protection it may need. E.g. FIB probing or photo voltaic charge detection can be prevented by physical means, like chip covers, but preventing leaks of secrets by timing- or simple power analysis needs careful implementations.

A submission my state that their algorithm is intended only in physically protected environments, where side channel attacks are prevented by the physical protection.

Side channel attacks

Some of the following side channel attacks (maybe even more?) need to be mitigated by proper implementations:

 Timing, EM radiation, SPA, DPA (High-order, multivariate…) attacks

A potential family of protection measures may include

 Random masking schemes on keys or on the secret input – such that the masking and de-masking procedure is simple enough, such that they can be made of low leakage

Fault injection attacks

The algorithm should have implementations of reasonable complexity, which leak no secrets at a small number (e.g. < 4) of targeted faults.

--- ---

Laszlo Hars, PhD

Chief Crypto Architect

Boeing Secure Computing Solutions

To whom it may concern:

My name is David Jao. I am the designer of post-quantum cryptosystems

based on the isogeny problem over supersingular elliptic curves.

I would like to draw your attention to the following areas in your

post-quantum cryptography draft requirements and evaluation criteria

which I believe would benefit from further clarification:

(Section 2.B.1) In prior NIST standardization processes, there was only

one functionality being evaluated (e.g. block ciphers for AES, and hash

functions for SHA3). In this draft, we have potentially up to three

distinct pieces of functionality (encryption, signatures, and key

exchange) being evaluated at the same time. Will NIST be evaluating all

the algorithms in a single submission package together, or will the

three types of schemes be evaluated separately? If the latter, why not

just accept separate submissions in each category rather than combining

schemes of each type into one submission? It would be helpful if NIST

could clarify the rationale behind accepting multiple items in one

submission. For example: "If a submission includes more than one type of

scheme, NIST will evaluate the schemes of each type separately. However,

submitters may choose to combine different types of schemes into a

single submission in order to share software code among multiple schemes

within the submission."

(Section 2.C.1) Does the requirement for ANSI C source code preclude the

use of assembly language optimizations? Your draft proposal does not

specifically address this question. I would like to see assembly

optimizations (at least inline ASM) allowed for the optimized

implementation, because otherwise the implementation would not be

representative of real-world conditions, especially for number-theoretic

cryptography which relatively speaking benefits more from assembly

optimization than other families of cryptosystems. It seems to me to be

a little inconsistent to specify a target platform (Intel x64) and not

allow platform-specific optimizations.

(Section 4.A.2) IND-CCA2 makes perfect sense for public-key encryption,

as well as key transport, but does not apply to key establishment in

isolation. It is not clear what security model NIST is proposing for key

establishment. All existing security models for key establishment that

I'm aware of are rather heavyweight, and the vast majority are tailored

to authenticated key exchange, which you mention only in Section 4.C.1.

As I am not an expert in security models for key establishment, I defer

to others on the question of what model to use. If NIST requires

external assistance in this regard then a public request for input would

be appropriate.

(Section 4.A.4) Typically, it is not possible to tune the classical and

quantum security levels of a scheme separately; a given choice of

parameters will imply a fixed classical security level and a fixed

(possibly different, but not independently tunable) quantum security

level. For example, any isogeny-based scheme with 128-bit classical

security automatically has 80 bits quantum security; therefore security

level number 1 in this section is superfluous for isogenies, as any such

parameter choice automatically satisfies security level number 2. It

would be helpful to have explicit guidance on what to do in such

situations. I suggest adding an explicit guideline to ignore such

inapplicable security levels.

(Section 4.A.4) In your FAQ

(http://csrc.nist.gov/groups/ST/post-quantum-crypto/faq.html) you state

that "quantum security should be defined as the minimum possible value

of log(depth*(squareroot (space))) PLUS A CONSTANT" (emphasis added).

The phrase "plus a constant" in my interpretation allows for some fudge

factor (note the sign of the constant is not restricted to being

positive!), so that something which (for example) strictly speaking

might provide only 125 bits of security could be considered to provide

128 bits. Unfortunately, this phrasing does not appear in the PDF of

your actual draft proposal. Instead, the draft proposal uses the

phrasing "meet or exceed" which is less flexible. For number-theoretic

cryptography, crossing a machine-level word size boundary incurs a huge

performance penalty, and for this reason it is extremely common to use

parameters which meet a given security level only up to the addition of

a small constant (e.g. Curve25519 provides only 125-bit security).

Therefore I would like to ask that the draft proposal be amended to

include the "plus a constant" phrasing.

(Section 4.B) This section lists cost considerations which apply

specifically to public-key cryptosystems and signature size, but does

not list any cost considerations which apply specifically to key

exchange. I would suggest that some attempt be made to specify some cost

considerations for key exchange protocols, or else explicitly request

comments on this topic from the public. Examples of cost considerations

specific to key exchange include the number of rounds of communication,

the number of static keys and ephemeral keys required, and whether or

not the protocol supports (or alternatively requires) synchronous and/or

asynchronous communication.

David Jao

University of Waterloo

Comments on "Proposed Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process", draft from August 2016

In general I'm positively impressed with the document and how it reflects discussions e.g. during the PQCrypto workshop. In the following I will raise one major and one minor issue and then give some detailed comments and suggestions. Please feel free to contact me if any of this is unclear.

The current document is still inconsistent in what categories NIST is asking for submissions. This matches the discussions in February when it was left open whether NIST would ask for a key exchange mechanism. The current document first speaks of 'key exchange' and later of 'key establishment'. The API documentation uses both words interchangeably.

It should be made clear what precisely is asked for. Most people understand key exchange to match the functionality that Diffie-Hellman key exchange is offering: two keypairs determine a shared secret without communication; keys can be reused, e.g. A's published key can lead to a shared secret with Bob, using Bob's public key, and one with Charlie, using Charlie's public key. This is the functionality matching eBACS's DH function API: given one public key and one secret key, compute the shared key.

The functionality described early in the draft call for proposals changes this to distinguish between an initiator message and a responder message. This does not

match common understanding of key exchange, which is also why the eBACS API does not fit.

Later on the call document -- now speaking about key establishment -- highlights the desired result: key transport and forward secrecy. The latter implies that new public keys must be generated frequently, requiring efficient key generation and small key sizes for transmission. I think it makes much more sense to ask for submissions for this scenario and a scenario with long-term public keys instead of asking for submissions for key exchange and encryption.

Realistically, public-key encryption is used only to transmit a key which is then used in a symmetric cipher; this is also recognized in the call document. The formal treatment of this is most advanced in the KEM/DEM framework: the public-key system is used as a key-encapsulation mechanism, which ensures that sender and receiver obtain the same key, and that key is then used in the data-encapsulation mechanism to encrypt the message. This avoids issues of padding.

To summarize, I recommend asking for submissions for two types of KEM:

· KEMs in which the receiver has a long-term public key; obtaining the key is outside the scope of specifying the KEM and

· KEMs in which at least one side generates and transmits a fresh public key.

instead of submissions for encryption and key exchange/establishment.

The second type of KEM scheme should be efficient enough that keys can be generated for each key transport, but ideally not break down completely if keys are reused. It would be good for the submitters to specify how key reuse would affect the security of their system. I understand that the latter might be captured under the property of 'robustness'.

The minor issue is that I would recommend to request a constant-time implementation of each retained algorithm in the second round. Timing attacks are one of the most basic and thus most powerful attacks and each implementation (in software or hardware) needs to be protected against it. The call currently says that you'll take ease of SCA protection into account; that will be much easier and more meaningful if the submitter has to send in a protected implementation. This might be seen as a burden by some, so I wouldn't require it as part of the submission package, but each proposer group can get help by the time the second round comes along.

Editorial comments:

1. p.2 "in the event that large-scale quantum computers" should be replaced by "to prepare for the event that large-scale quantum computers" (or similar). It is too late to change once a QC is built. Even if long-term security is not a concern, roll out would take too long. (This is captured well a few paragraphs further down but confusing here).

2. p.4 It is unusual for key-exchange schemes to distinguish between initiator and responder messages. It is normal to request that the scheme defines a shared secret for each pair of public keys. If the definition is different this should be stated early on. It might be that you're instead asking for public-key encryption schemes for one-time use public keys with fast key generation (which is different from the typical DH message flow). See above.

3. p.5 In case a submitter has submitted his implementation to eBACS there will be benchmarks on a multitude of processors. Describing all the platforms and all the results would unnecessarily blow up the submission document. I recommend to allow inclusion by reference to the page for the primitive on bench.cr.yp.to. Of course, the submitter should still be free to highlight some processors and implementations if he chooses to and then be required to describe the platform, so this is a suggestion to permit a reference in addition.

4. p.7 Do you really want to receive all pdf files of papers or are links to public versions of the paper sufficient? Can people set up a webpage with supplemental material including links? I foresee a problem with copyrights: authors usually have the right to put their author copy online; if their work is relevant to my submission, I can put a link to their work on my homepage without violating any copyright, but I cannot submit the paper to NIST and make a statement about the copyright. This basically means that I cannot use papers published by others.

5. What do you mean by "unusual vulnerabilities"? Would this be e.g. key reuse in a scheme where decryption failures can be used to determine the secret key? or the fragility in ECDSA with nonce reuse? It would be good if you could be more specific. For the avoidance of doubt, please specify whether assembly subroutines or intrinsics are acceptable.

6. p.10 "the quantum-resistant algorithm evaluation process": elsewhere you've changed to 'post-quantum' so I suggest to adjust the phrasing here to match.

7. p.13 Same comment regarding key exchange being asymmetric in initiator and responder as above.

8. p.16 You mean 2^k executions of AES on the given architecture? See the detailed analysis of the costs of using Grover on AES (PQCrypto 2016); are you considering the estimated cost of 2^32 to equal 1? I've seen the FAQ on this topic, but that didn't help. Some algorithms suffer much more from requiring the steps to be reversible than others, so it will be necessary for cryptographers to understand quantum algorithms in any case. In principle this is not a new problem -- 1 ECC operation is not the same an AES operation and we don't even know how to define the exact security level of elliptic curves. Counting operations in quantum algorithms is at least as hard. While I think that we cannot reach a way of comparing security between AES and post-quantum systems, I strongly suggest that systems using similar primitives count their efficiency the same way, e.g. code-based systems against which information-set decoding is the most efficient, should have a consistent way of using the cost of one loop; same for lattice-based systems using sieving. These ways might not be accurate in the end, but at least they allow comparisons within one class of algorithms. Eventually it is necessary to compare systems across different primitives, but by then more detailed research on current and quantum attacks will have happened.

9. p.17 I often encounter practitioners who take "perfect forward secrecy" to mean that a later attack cannot do harm and misunderstand it to mean that they can continue to use ECC till quantum computers arrive. They are surprised when they understand that having the public messages + keys is enough to later on break the scheme with a quantum computer. Due to this confusion I have started to use "key erasure" for this concept; given that this is not yet a common term it is necessary to add a parenthetical comment "(also known as perfect forward secrecy)" for now. Please be more specific when referring to this concept. Do you accept schemes that become insecure if the same key is reused or do you mean to ask for schemes which have very fast key generation time and do not require much space for the key transmission?

10. p.17 While it is grammatical to say 'resistance to side-channel attack' I would suggest to use the plural 'attacks' here, because there are many different attacks and a system might not be equally defendable against all of them. It might be useful to include a ranking of what types of attacks must be covered, e.g. timing attacks are applicable in significantly more situations than power analysis.

11. Regarding multi-key attacks: a brute force attack is always sped up when many targets can be attacked; you might want to specify that this would be with respect to the best attack or be more precise in the 'an advantage'. Also it depends on the number of available keys -- after very many keys, brute force search might be the best possibility, so limiting to 2^64 or 2^96 keys seems reasonable.

12. The 'compromise a single key pair' case could be made more precise: I assume you mean attack any single key, so 1 out of n vs. n out of n; using a bit of notation should help here.

13. "established body of cryptographic research" is too narrow and excludes work done in number theory or complexity theory which studies the same problems but at different venues (compare to RSA drawing on the body of factorization research, which gets published in crypto venues, but also at ANTS, Math Comp,, and other journals).

14. p.18 same comment regarding "perfect forward secrecy" vs "key erasure"(twice)

15. 4.B.4: I assume that this text deals with accidental decryption failures which are a nuisance and should thus be avoided. I suggest adding that you consider attacks using decryption failures as attacks, if failures are sufficiently common or can be triggered by an attacker.

16. Nitpick: what do you mean by 'encrypting the same _cipher_text'? Btw. I'm not sure that one can always reach _acceptable_ rates, this really depends on how bad the scheme is.

17. p.20 "All proposed changes must be proposed by the submitter;" I would add that the submitter can submit implementations prepared by third party with the permission of the third party. At least my understanding is that you want to ensure that the proposer endorses the implementation, but it is not necessary for the implementer to become part of the proposers team.

18. Other files: kat.pdf still includes instructions to Sara. (twice). api-notes.pdf:

19. Skipping most comments because the specifications of what is wanted are still not fixed.

20. Please note that the supercop benchmarking framework generates KATs from submissions; submitters can also specify these in a separate file. This means that you don't need to change the API to include those.

Tanja Lange

TU Eindhoven

Dear NIST,

I have two comments about the draft document.

The first concerns the target security requirements in section 4.A.4. I do not understand the relationship that is drawn between the security of public key primitives and brute-force attacks on SHA/AES. Unlike SHA/AES, the best attacks against public key primitives are not brute force, so there is no reason to assume that the effect of Grover’s algorithm on the quantum security of such primitives is analogous to its effect on symmetric ones such as SHA/AES.

Of course, when public key primitives use SHA as a sub-routine, the parameters of SHA should be set appropriately to resist quantum attacks (for example, in Fiat-Shamir constructions, one can use a hash function with 128-bit outputs to have 128 bits of classical security in the random oracle model, but would most likely need to use SHA-256 for 128-bits of quantum security.) But just because one needs to increase the security of the hash function does not imply that anything needs to be increased in the rest of the construction. For example, there are no known quantum algorithms for lattice reduction that outperform classical ones by any significant margin. Thus other than adjusting for a larger output from SHA, there would be no reason to increase the hardness of the lattice problem in the aforementioned Fiat-Shamir example.

Perhaps something reasonable that could be mandated is that if one uses hash functions or block ciphers within the primitive, then they must at a minimum have all the classical/quantum security features of SHA-256 and AES-256 (or one can just use SHA-256 or AES-256). But I believe that it would be very wasteful to set parameters so that the whole public key scheme is 256-bit secure classically when what we really want is that the scheme cannot be broken in 2^128 time on a quantum computer.

My second comment/question is about 4.B.4. Would it be possible for NIST to specify precisely what are the acceptable rates of decryption or key-agreement failures? If these failures lead to attacks, this is of course unacceptable. But if, for example, with probability 2^-30 the key-transport protocol fails and thus needs to be redone, is this something that’s acceptable?

Thank you very much and best regards,

Vadim Lyubashevsky

IBM Research - Zurich

Dear NIST Team,

we have a comment to your DRAFT Call for Proposals:

For proposals of digital signatures, could you make a more clear separation between a mode vs. a underlying primitive that instantiates this mode?

We believe such separation would be less applicable to other categories like encryption or key-exchange, but a similar distinction came up, e.g., in the CAESAR competition.

Best regards,

Christian Rechberger, Martin Lauridsen

Technical University of Denmark, DTU

Willi Meier

FHNW

Please find enclosed comments from us on the proposed submission and evaluation criteria for the Post-Quantum Cryptography Standardization Process.

Page 3, first paragraph of Section 2.

The current submission process has a single deadline. Given the current state of post-quantum cryptography, it may be preferable to separate submissions into several generations to allow for new findings to be accommodated.

Page 7, first paragraph of Section 2.C.1

It is unclear the reason to include optimized source code within the submission package. Typically, optimizations are a way for industry to differentiate product offerings from each other and as such should be considered out of scope for the standardization process.

In addition, optimized code will often contain assembly which goes against the specification requirement of “written in ANSI C”.

Page 7, second paragraph of Section 2.C.1

Perhaps add encryption, decryption and shared secret generation for completeness.

Page 8, first paragraph of Section 2.C.3

Typically source code is also considered to be “written material”. To avoid ambiguity, perhaps reword as “supported documents.”

Page 10, last paragraph of Section 2.D.1

The first sentence says “the quantum-resistant algorithm evaluation process.” For consistency we think you mean “the post-quantum algorithm evaluation process.”

Page 12, first paragraph of Section 2.E

The list includes “source code”. The reference to English is ambiguous then since source code would be written in ANSI C. Instead do you mean that comments in source code should be written in English?

Page 14, Section 4.A.1

Instead of saying “IPSec” perhaps instead use “IPSec/IKE” is IKE is where the public key cryptography is. You may also consider adding S/MIME.

Thanks,

Mike Brown and Atsushi Yamada

Isara

Dear Sir or Madam,

the Bundesdruckerei is producing ID documents and runs a trust center for various use cases. We are currently involved in the EU project PQCRYPTO, the ISO SC27 WG2 efforts for Post-Quantum-secure algorithms and we are working on post quantum secure implementations with our subsideary company Genua. We are very excited that NIST is moving forward in standardization of PQC.

Unfortunately, standardization committees in general have suffered from a decline in credebility in the past years. Many people think that the standardization process can be manipulated by powerful industry lobbying and governmental intrests. We think, that a modern standardization should include the maximum amount of transparency possible. NIST has done a great job with the AES and the SHA-3 competition. We hope that this success can also be achieved with the standardization of Post-Quantum-Cryptography.

PQC will most likely be used for applications with long term security. Those applications are already in danger today, because encrypted communication can be stored forever and could be analyzed later with a quantum computing. We see a big need for PQC as of today. But of course, new algorithms should be evaluated well from many aspects. The mandatory criteria you have outlined are certainly necessary. Though we are looking at many of your optional features as mandatory.

One of the main problems is that PQC should receive a good amount of cryptanalytic attention before standardization. Therefor, we need to measure the confidence in an algorithm somehow. Means to create this confidence may, for example, be a proof of security, the number of scientific citations/reviews or

simply the time an algorithm has been out there for public review. With the urge today, this effectively means that we should concentrate the standardization efforts on algorithms that are known for a longer time. There are some promising algorithms that have been developed in the past years, but evaluation still needs some time.

An other essential part in the process of establishing thisconfidence is exposing a detailed and well-supported design rationale. This rationale can be used by experts to verify that the design indeed follows the design strategy (recall the curves that were not generated according to the public procedures), and verify whether the security margins offered by the design are consistent with the design strategy and target.

We hope this helps you refining your evaluation critarias. We are looking forward hearing your feedback.

Best regards,

Frank Morgner

BSI

16 September 2016

National Institute of Standards and Technology

Computer Security Division

Subject: Comments on Proposed Submission Requirements and Evaluation Criteria for the Post-

Quantum Cryptography Standardization Process

Microsoft Corporation appreciates the opportunity to submit comments on the subject draft.

We believe that this standardization process is both timely and critically important. NIST’s past

standardization activities for AES and SHA-3 were outstanding examples of evaluations of

candidate cryptographic algorithms, and the algorithms selected through these processes are

now being deployed throughout industry worldwide. We look forward to a similar outcome

from this process, and an open and transparent process with clear technical guidelines and

evaluation criteria will help ensure that the results of this process are trusted and credible.

Executive summary and high-level recommendations

We have suggestions that we believe will improve the proposed standardization process and the

outcome. Our comments focus on the following areas:

 Intellectual Property Rights

 Performance Measurement

 Evaluation Under Real-World Scenarios

 Security Levels

 International Standardization

A. Intellectual Property Rights:

The current draft includes the following statement on Intellectual Property in Section 2.D:

NIST has observed that royalty-free availability of cryptosystems and

implementations has facilitated adoption of cryptographic standards in the

past. As part of its evaluation of a PQC cryptosystem for standardization, NIST will

consider the assurances made in the statements by the submitter(s) and any patent

owner(s), with a strong preference for submissions as to which there are

commitments to license, without compensation, under reasonable terms and

conditions that are demonstrably free of unfair discrimination.

Further, the proposed required Statement by Patent Owner(s) in Section 2.D.2 explicitly

allows for a patent holder to select an option of RAND (reasonable and nondiscriminatory)

licensing with compensation.

This is a change from the SHA-3 competition in that royalty-free licensing is not required

by the proposal but is merely a factor to be considered. We have seen in the past how

ambiguity and licensing have hampered the adoption of new cryptographic

technologies. It is critical that NIST maintain the same intellectual property rights

disclosure and release requirements that were set out for the SHA-3 competition, namely

that all submitters be required to release any and all IP claims as a condition of entry,

and that each submitter agree to unrestricted, royalty-free use of their work.

Additionally, we note that the proposed approach to Intellectual Property Rights for this

competition conflicts with NIST’s stated commitment in NISTIR 7977 on this specific

issue. See NISTIR 7977, Section 7 (“Policies and Procedures for the Life Cycle

Management of Cryptographic Standards and Guidelines), Subsection 4 (“Define a

Specific Plan and Process”), bullet point “Hold a Competition” (bottom of page 18 of

NISTIR 7977), where NIST writes [emphasis added]:

If NIST decides to pursue the development of a standard or guideline, it may use

an open competition. When a competition is used, interested parties will have an

opportunity to participate in the competition by reviewing core requirements and

evaluation criteria, publishing research papers, submitting comments, and

attending public workshops. Researchers worldwide may contribute candidate

designs and papers on the theory, cryptanalysis and performance of the

candidates. The winning submitters are recognized, but agree to relinquish

claim to intellectual property rights for their design so that the winning

candidate can be available for royalty-free use.

This process is clearly a competition as defined in NISTIR 7977, so NIST must adhere to

the IPR commitments it made for competitions in that document. To that end, Microsoft

strongly suggests that the “reasonable terms and conditions” IPR language be struck

from the proposal in favor of the exact language used in the SHA-3 competition,

guaranteeing that the selected algorithms be “available on a worldwide, non-exclusive,

royalty-free basis.”

B. Performance Measurement

i. Constant Time Implementations

Section 2.C.1 (“Implementations”) references “optimized implementations” that will be

used for performance benchmarking. Real-world applications of cryptographic schemes

require constant-time implementations as a minimum to protect against timing and

cache-timing attacks.

To ensure that “optimized implementations” reflect what would be deployed, and to

enable apples-to-apples comparisons, all “optimized implementations” submitted for

this effort should be designed to be constant-time. Second-round updates to

submissions may make updates to fix constant-time-related bugs in first-round

submissions.

ii. Performance Tooling

The performance evaluation of “optimized implementations” must be done by NIST

directly or by an independent and neutral third party not affiliated with any party

involved in any submission. The tools used in this evaluation must be open,

independent, auditable and neutral, their code must be freely published for inspection,

and must not be owned by or affiliated with any party involved in any submission. No

submitter can be involved in performance evaluation in any capacity.

iii. Performance Testing Scenarios

The performance evaluation should cover the following platforms at a minimum: a 64-bit

processor “server class” and a 32-bit processor “mobile class”. In addition, testing should

be conducted on 8-bit and 32-bit microcontrollers, and be evaluated on at least one

alternative hardware platform (e.g., FPGA).

C. Evaluation Under Real-World Scenarios

i. Hybrid Modes:

In Section 1, NIST writes that “hybrid modes” which combine quantum-resistant

cryptographic algorithms with existing (not necessarily quantum-resistant) cryptographic

algorithms are out of scope for the competition. We believe this limitation is overly

restrictive for two reasons. First, some proposed quantum-resistant schemes may have

benefits when combined with certain classical schemes, and NIST’s evaluation process

should be able to consider such benefits1. Second, ease of integration and engineering

compatibility with classical cryptography must be a consideration in the evaluation of

submitted algorithms as a desirable property. It is most likely that post-quantum

cryptographic schemes will be deployed in such hybrid modes first and be used

alongside classical cryptography for a significant amount of time. Candidate quantumresistance

schemes must be evaluated in the wider context in which they will be applied,

which will include integration with classical cryptography.

ii. Protocol Scenarios

NIST should identify several high-priority protocol scenarios, such as TLS, for evaluating

and testing submitted schemes. Ease of integration with the most commonly used

security protocols and performance in such scenarios must be an important evaluation

criteria.

1 For a practical example of such ancillary benefits see C. Costello, P. Longa and M. Naehrig, Efficient Algorithms for

Supersingular Isogeny Diffie-Hellman, recently presented at Crypto 2016 and available online at

http://eprint.iacr.org/2016/413. In this paper the authors present a post-quantum key agreement scheme based

on supersingular isogenies, and in Section 8 they present a strong ECDH+SIDH hybrid (“BigMont”) that leverages

the underlying field arithmetic of the post-quantum scheme to provide a parallel ECDH key exchange for very little

overhead. NIST’s current proposed language would prohibit NIST from considering hybrid benefits from such

schemes.

In the second round, those candidates selected to continue on should be asked to apply

their submissions to selected real-world protocols, such as TLS, to further the evaluation.

D. Security Levels

In Section 4.A.4 (“Target Security Strengths”), NIST identifies five target security strengths

for which submitters will be asked to provide parameter sets. We are concerned that the

lowest security strengths identified are too low: the requirements should encourage

strong and conservative security levels. There are also too many security strengths

specified. Reducing the number of parameter sets required of submissions will simplify

the evaluation. We suggest that NIST remove target levels (1), (2) and (3) and replace

them with a target level of 128 bits classical security / 128 bits quantum security, and

that this new level be the minimum target level. Target levels 4) 192 bits classical security

/ 128 bits quantum security and 5) 256 bits classical security / 128 bits quantum security

should be consolidated to one level, and then a third higher level should be added to

provide more breathing room in the face of continuing cryptanalytic advances. We

suggest that this new higher level be 256 bits classical security / 192 bits quantum

security.

Any scheme that has an efficiency or technical obstacle, must clearly justify the

limitations that prevent it from achieving the desired security level.

E. International Standardization

In our letter of 25 March 2015 and the accompanying formal comments on the thendraft

NISTIR 7977, Microsoft stressed the importance of submitting key NIST standards

to standards development organizations (SDOs) with international scope, in particular

standards that result from competitions. For this competition we strongly encourage

NIST to plan to submit the selected algorithms to one or more international SDOs after

the resulting FIPS or SPs are completed. There is an opportunity when establishing new

post-quantum cryptography standards to have fewer national variations worldwide.

Conclusion

We believe these modifications will strengthen the proposed process, will ensure the strongest

technical outcome from the evaluation, and will provide the best transparency and assurance to

the community.

Thank you again for the opportunity to submit these comments. We would be happy to discuss

these recommended modifications, or any other aspect of the draft, with you.

Sincerely,

Brian A. LaMacchia, Ph.D.

Director, Security and Cryptography, Technology and Research Group

Microsoft Corporation

 General Comments:

* The terminology in the document should be more consistently used; for example, quantum-resistant vs. post-quantum.

* The document should make the use of the term "parameters" clearer; whether "parameters" refer to a general parameter set for the primitive, a specific choice of public parameters or even a full suite of test parameters. For example, ECDH with a 384-bit prime curve, ECDH with the P-384 curve or ECH with curve P-384 and test key pairs.

* There should be more care with the use of pseudo-normative language (shall/should and must/may) as this could lead to problems later in the competition. As an example, if the README file for a submission doesn't list all of the files on the CD, then someone could claim that it is not a "complete and proper" submission as it fails to meet the mandatory requirements in section 2.C.4:

	o The "README" file shall list all files that are included on this disc with a brief description of each.

Specific Comments:

Section 3.3.c - The scheme shall be capable of supporting a message size up to 2^63 bits.". For hash-based signatures, the number of messages that can be signed is limited by the parameter set used. If the submission is supposed to provide concrete values for the parameter sets, should there also be a requirement on the number of messages that it must be capable of signing? A bound of 2^64 messages is given in Section 4.A.3 but then it states that "attacks involving more messages may also be considered".

Section 4.A.2 - "NIST intends to standardize at least one scheme that enables "semantically secure encryption" with respect to adaptive chosen ciphertext attacks". This statement is slightly confusing. Does this imply that NIST might also standardize other encryption schemes that are not secure against active attacks? It is not clear as well what security model is expected for key agreement.

Section 4.A.4, paragraphs 4-7 - While understanding the desire to find a way to fairly address the issues with parallelization, this discussion somewhat undermines the clear definition of security targets given in the previous paragraphs. One can imagine arguments similar to those about what does and doesn't constitute an attack during the SHA-3 competition.

Section 4.A.4, paragraph 7 (starting "Since NIST's goal") - implies that they are equating s bits of quantum security with the time t it takes to break a 2s-bit key by Grover's algorithm given w much space. It is commonly held that for Grover's algorithm, we have t^2 * w = 2^(2s). If that is NIST's definition of quantum security, it should be explicitly stated. Does this mean that an attack that uses 85 bits of quantum memory and 85 bits of quantum depth is not feasible because one could only attack a 255-bit key with Grover's algorithm using such a circuit?

There are definitely quantum algorithms which may be of interest that parallelize better than that. For example, on arxiv.org there is a 2012 paper titled Efficient Distributed Quantum Computing which shows that for a certain quantum problem, you have t^2*w^2 = 2^(2s) (i.e., Grover square root the circuit area, not circuit depth). As a result, there may be some hash-related properties that you can solve a 360-bit hard problem classically.

NIST should be aware that using the given definition for quantum resistance may inadvertently call some things weak that they don't necessarily want to, given that this costing method is very generous towards higher-memory methods.

Section 5.A - Wouldn't NIST have to have compelling reasons to select an algorithm for standardization if it didn't receive additional analysis during the later phases? Even with compelling reasons, wouldn't there be a strong push back from the community? It might be worthwhile to provide clarification for this scenario.

Some minor editorial comments on spelling/grammar have been omitted.

National Security Agency

Dear NIST post-quantum team,

Thank you very much for running this competition. As you are asking for

comments on the draft, here are a few things that you might want to

consider:

- In Section 4.A.2 ("Security Model for Encryption/Key-Establishment")

 you are treating Encryption and key exchange together and are asking

 for IND-CCA2 security. It may be interesting to distinguish the two

 cases of public-key encryption (to a long-term key, requiring CCA

 security) and ephemeral key exchange, which needs only passive

 security. For example, the "NewHope" key exchange by Alkim, Ducas,

 Pöppelmann and myself, which is currently used in Google's

 post-quantum experiment, is explicitly *not* offering CCA security. We

 could, for the sake of the competition, modify it to achieve this

 goal, but this would sacrifice security and performance for the

 ephemeral case, where CCA security is not required.

 On August 26, Jacob Alperin-Sheriff sent us (the NewHope authors) an

 e-mail suggesting that NIST might be intersted in receiving NewHope

 (or maybe by next year an improved version) as a submission to the

 competition, but with the current call I don't see how it would fit

 in.

- Section 4.A.4 asks for submissions at different security strenghts.

 What I find interesting is that there is no level offering the same

 security against classical and quantum attacks. For example, imagine

 an algorithm that offers N bits of security both against classical and

 quantum attackers. Personally, I want crypto that offers 128 bits of

 long-term security, so the only way to fit this algorithm into the

 proposed security levels is to scale N to 192, although most users

 would be happy with 128-bits of pre-quantum and post-quantum security.

Best regards,

Peter Schwabe

Digital Security Group

Radboud University

Dear NIST,

I have one suggestion for the Proposed Requirements and Evalutation Cruteria (DRAFT).

Section 2.B.1, paragraph 3:

"For algorithms that have tunable parameters (such as the dimension of some underlying vector space, or the number of equations and variables), the submission document shall specify concrete values for these parameters. If possible, the submission should specify several parameter sets that allow the selection of a range of possible security/performance tradeoffs. In addition, the submitter should provide an analysis of how the security and performance of the algorithms depend on these parameters."

Suggestion:

" For algorithms that have tunable parameters (such as the dimension of some underlying vector space, or the number of equations and variables), the submission document shall specify concrete values for these parameters and the submitter is required to provide an analysis of how the security and performance of the algorithms depend on these parameters. If possible, the submission should specify several parameter sets that allow the selection of a range of possible security/performance tradeoffs.

Thank you.

Best regards,

Seidl Jan

Deloitte

Comment on Post-Quantum Cryptography Requirements and Evaluation Criteria

September 16, 2016

Thank you for the opportunity to provide feedback on the upcoming NIST Post-Quantum Cryptography project.

The draft submission requirements set out a clear plan for a transparent process that will lead to the identification of one or more post-quantum technologies with confidence in the result. Please find below comments on six aspects of the submission requirements which I believe will further improve the process.

1) Security levels and refinement

The draft submission requirements ask for parameter sets at five target security levels, the lowest 3 of which are at 64, 80, and 96 bits of quantum security. Reducing the number of target security levels will simplify submissions and allow cryptanalytic research to focus on fewer parameters. I suggest omitting security levels below 128 bits of quantum security.

Given that some submissions will be based on mathematical problems for which cryptanalysis continues to advance, it seems plausible that security levels of parameter sets may evolve, either favourably or unfavourably, during the evaluation process. It would be unfortunate if promising submissions were disqualified because of cryptanalytic advances shaved e.g. 10 bits of security off of a 128-bit-level submission. I suggest that NIST aim to include some room for refinement of parameters in these scenarios, possibly (a) between the first and the second round, or (b) during a round with a minor update, or (c) by incorporating an even higher security level (say, 192-bit quantum security) to provide breathing room.

2) Royalty-free

NIST should require submitters to meet the same intellectual property requirements in the previous SHA-3 competition, namely that if their submission is selected then the submitters agree to place no restrictions on use of the algorithm, making it available on a worldwide, non-exclusive, royalty-free basis.

3) Key establishment / KEM security

Early text from NIST asked which model to use for key establishment; the current submission requirements say IND-CCA security. I support this security requirement. Among other reasons, it is compatible with the notion used in security proofs of TLS [Jager et al. CRYPTO 2012, Krawczyk et al. CRYPTO 2013].

4) Application-level performance

NIST should identify a variety of application scenarios and evaluate submissions in these scenarios. Given that many post-quantum schemes will involve trade-offs between runtime, memory, and communication, evaluating these schemes in applications may provide surprising results compared to standalone evaluation. TLS should certainly be one of these application scenarios. Given the complexity of adding new algorithms to TLS implementations and fairly benchmarking such a system under realistic loads, NIST may want to apply this evaluation only to second round candidates, and NIST may also want to provide a standard interface and code for integration, rather than requiring submitters to each implement this themselves. For example, it should be possible to modify OpenSSL or another open source TLS implementation to include a ciphersuite that calls in to the NIST-specified PQC API.

5) Transition from traditional to post-quantum algorithms

In the years following this NIST process, standards and implementers will likely gradually transition to post-quantum cryptography, running traditional and post-quantum algorithms side-by-side. While the NIST process rightly focuses on evaluating the security and practicality of post-quantum algorithms, one aspect of practicality is enabling a smooth transition. NIST may want to include as a positive evaluation criteria any characteristics of the scheme which enable a smoother transition, for example a post-quantum scheme that can be easily run in a hybrid mode alongside a tradition algorithm and (safely) share some parameters.

6) Key exchange API

The current C API for key exchange has four functions:

 crypto_keyestablishment_initiator_generate

 crypto_keyestablishment_responder_generate

 crypto_keyestablishment_initiator_recover

 crypto_keyestablishment_responder_recover

The responder_generate function outputs a responder public key (ker) and a responder private key (skr), and then the responder_recover function outputs the shared secret (ss). This makes sense for plain Diffie-Hellman protocols, but may not make as much sense for some other protocols. KEMs generically are separated into 3 algorithms: KeyGen, Encaps, Decaps; the Encaps algorithm might be easily separable into responder_generate and responder_recover, but not necessarily.

(For example, in the Peikert [PQCrypto 14], BCNS [IEEE S&P 15], and NewHope [USENIX 2016] ring-LWE key exchange protocols, the responder's secret key is ostensibly s'; in responder_generate, the responder would compute the outgoing message and reconciliation data (u and r in NewHope); in responder_recover, the responder would need to recompute all of these values in order to then derive the shared secret (mu). Of course an implementation could use the skr output of responder_generate to store the shared secret and then just use responder_recover to output that, but this seems to go against the spirit of the API.)

I recommend revising the API for key exchange to have three algorithms: initiator_generate, responder, initiator_recover.

Thank for your consideration.

Sincerely,

Dr Douglas Stebila

Assistant Professor

Department of Computing and Software, Faculty of Engineering

McMaster University

Hamilton, Ontario, Canada

Dear Madam/Sir,

I have a few of comments on the document "Proposed Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process".

In Sections 4.A.2 and 4.A.3, you set the number of decryption (resp.

signature) queries, that an attacker against a proposed encryption (resp. signature) scheme can make, to at most 2^64.

I find this very low compared to the targets of security mentioned in Section 4.A.4. What is the rationale for not letting the adversary make essentially as many queries as the target security?

I am a bit confused by Section 4.A.4. Clearly, the classical and quantum bit security of a given scheme can differ. But why are the ratios 1/2 and 2/3 put forward as targets? This seems driven by search and collision-search, but these algorithms may not be so relevant for the schemes that will be proposed.

We could very well imagine that for some proposed schemes, the ratio will be 1, and for others it will be 1/10. As the focus is on quantum security, it may be tempting to focus on quantum bit-security targets, possibly with an additional requirement of not getting below a certain (and higher) classical bit security.

Best regards,

Damien Stehlé

[bookmark: _GoBack]Ecole Normale Superieure de Lyon

